next up previous index
Next: . Up: Derivations For the Curious Previous: Cubic Nonlinear ODE   Index

Click for printer friendely version of this HowTo


Vector and Matrix Calculus

Let x be an $ n \times 1$ vector and let A be an $ m \times n$ matrix of elements that are not functions of x. Then

$\displaystyle \frac{\partial \bf Ax}{\partial \mathbf{x}} = {\bf A}'.$ (D.3.1)

To see this, we'll just multiply out Ax and then apply the definition of vector differentiation (Equation 3.12.1). Thus

\begin{displaymath}
\frac{\partial \bf Ax}{\partial \mathbf{x}} =
\frac{\partial...
...1} + a_{m, 2}x_{2} + \cdots + a_{m,n}x_{n}
\end{array}\right],
\end{displaymath}

and, in order to keep our matrix from getting too big for the page, let
$\displaystyle a_{1,1}x_{1} + a_{1, 2}x_{2} + \cdots + a_{1,n}x_{n}$ $\displaystyle =$ $\displaystyle {\bf a}_{1}{\bf x}$  
$\displaystyle a_{2,1}x_{1} + a_{2, 2}x_{2} + \cdots + a_{2,n}x_{n}$ $\displaystyle =$ $\displaystyle {\bf a}_{2}{\bf x}$  
$\displaystyle \vdots$   $\displaystyle \vdots$  
$\displaystyle a_{m,1}x_{1} + a_{m, 2}x_{2} + \cdots + a_{m,n}x_{n}$ $\displaystyle =$ $\displaystyle {\bf a}_{m}{\bf x}.$  

Thus,
    \begin{displaymath}\frac{\partial}{\partial \mathbf{x}}
\left[
\begin{array}{c}
...
...c{\partial}{\partial x_n} {\bf a}_{m}{\bf x}
\end{array}\right]\end{displaymath}  
  \begin{displaymath}=\left[
\begin{array}{cccc}
a_{1,1}&a_{2,1}&\cdots&a_{m,1} ...
...\
a_{1,n}&a_{2,n}&\cdots&a_{m,n}
\end{array}\right] = {\bf A}'\end{displaymath}    


next up previous index
Next: . Up: Derivations For the Curious Previous: Cubic Nonlinear ODE   Index

Click for printer friendely version of this HowTo

Frank Starmer 2004-05-19
>