next up previous index
Next: Proof of -Distribution Up: Derivations For the Curious Previous: .   Index

Click for printer friendely version of this HowTo

.


$\displaystyle { \left[{\bf X}({\bf X}'{\bf X})^{-1}{\bf C}'\left[ {\bf C}({\bf ...
...}
\right]^{-1}(\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})
\right] }$
  $\displaystyle =$ $\displaystyle (\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})'
\left[ {...
...-1}{\bf C} \right]^{-1}
(\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})$  
  $\displaystyle =$ $\displaystyle (\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})'
\left[ {...
...-1}{\bf C} \right]^{-1}
(\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})$  
  $\displaystyle =$ $\displaystyle (\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})'
\left[ {...
...-1}{\bf C} \right]^{-1}
(\boldsymbol{\theta} - {\bf C}\hat{\boldsymbol{\beta}})$  



Frank Starmer 2004-05-19
>