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Boundary-layer analysis of waves propagating in an excitable medium:
Medium conditions for wave-front—obstacle separation

J. M. Starobifi and C. F. Starmer
Departments of Medicine (Cardiology) and Computer Science, Duke University Medical Center, Durham, North Carolina 27710
(Received 11 September 1995; revised manuscript received 4 March 1996

In an excitable medium, wave breaks are essential for spiral wave formation. Although wave breaks can
result from collisions between a wave and an obstacle, it is only when the resultant wave fragments separate
from the obstaclgwave-front—obstacle separatjothat a spiral wave will begin to develop. We explored
collisions between a piecewise linear obstacle and an incident wave front while varying the excitability of the
media and the angle between the linear obstacle segments. Wave-front—obstacle separation was observed to
occur within the small boundary layer of the order of the wave-front thickness. Conditions for wave-front—
obstacle separation were determined by the relationship between reaction-diffusion flows within this boundary-
layer region. We developed a theoretical characterization of the boundary-layer region that permits estimation
of the critical values of medium parameters and obstacle geometry that define the transition from wave-front—
obstacle attachment to wave-front—obstacle separation. Theoretical predictions revealed good agreement with
results of the numerical simulations$$1063-651X96)00707-6

PACS numbep): 47.32.Cc, 87.22-q, 82.40.Ck, 87.16-e

Wave propagation in many chemical and biological mediaobstacle collisions, we focused on developing a different ap-
can be described in terms of a nonlinear reaction-diffusiorproach which permitted us to describe the behavior of the
equation1]. Waves are created by a stimulus that switches doundary layer between a piecewise linear obstacle and a
small portion of the medium from a “rest” state to an “ex- colliding excitation wave. The main idea behind our ap-
cited state.” If the stimulus is below a certain threshold, proach was to partition this boundary layer into small regions
either no wave is created or the wave collapses. If the stimuand analyze the fluxes that flowed between the wave-front
lus is larger than this threshold, a wave propagates awagsegions and the adjacent “rested” regions. Using this strat-
from the stimulus site and then dies at the boundary of thegy, we found that the transition between wave-front—
medium. However, if the wave is fragmentéatoker), per-  obstacle separation and wave-front—obstacle attachment de-
haps secondary to a collision with an unexcitable obstaclggended on a critical balance of the reaction-diffusion flows
there are two possible outcomes: either the wave fragmentgithin a boundary layer of the order of the wave-front thick-
maintain contact with the obstacle bound@Rig. 1(A)] or  ness.
the fragments separate from the obstacle boundkiy. Numerical studies of wave-front—obstacle interactions
1(B)] forming a spiral wave similar to that observed in demonstrated that the possibility of wave-front—obstacle
chemical medig2] and in cardiac tissug3]. Although the  separation occurred during the initial moments of front for-
evolution of wave breaks following wave-front—obstacle col-mation at the obstacle boundary and was influenced by the
lisions has been studied numerical§—8] and experimen- medium “excitability,” i.e., the magnitude of a perturbation
tally [9,10], the conditions that determine the subsequent fateequired to initiate a propagating wai@).
of a wave fragment remains unclear. Here we consider the nonlinear reaction-diffusion equa-

For many excitable media including cardiac tissue, thetions of the FitzHugh-Nagumo class
diffusion fluxes coupling neighboring elements of excitable

media reside within the wave front of thicknesgwhich is au_d%u N d*u L f(u)-V o)
much smaller than the length of the excitation wave. The at axZ ' ay? ’

dynamics of such waves can be described by the kinematic
theory when the wave-front radius of curvature is larger than
both the wave-front thickness and the distance between the EZS(VU_V)’ @
wave front and wave badi 1]. For a broken wave, the local
radius of curvature at each tip is comparable to the wavewhere u(x,y,t) is a dimensionless function similar to the
front thickness and much smaller than the length of the wavéransmembrane potential in a biological excitable cell and
itself. Consequently analysis of the tip movement of a reV(x,y,t) is a dimensionless function similar to a slower re-
cently fractured wave is beyond the assumptions of the kinecovery current. Using this electrical analogy, we consider
matic theory. reaction-diffusion fluxes to be the flow of a char@erreny
Seeking a more comprehensive understanding of aown a potential gradient. Excitability is determined by the
mechanism of wave tip motion following the wave-front— nonlinear functionf (u) that represents the reactive proper-
ties of the medium and to some extentdthe ratio of fast
to slow time constants. We considéfu) as a piecewise
*Author to whom correspondence should be addressed. Fatnear function similar to the current-voltage relationship of a
(919684-8666. Electronic address: josef@hodgkin.mc.duke.edu nonlinear oscillatofFig. 2(A)]. The slope of this functioi
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FIG. 1. Panels A and B show the computed temporal evolution /\\ Propagating Pulse

of an excitation waveleft to right, top to bottom for different /\ >
excitabilities\ following the collision with an unexcitable obstacle. W
We solved the reaction-diffusion systdiqgs. (1), (2)] numerically
with no-flux boundary conditions at the medium boundary and ob-

stacle surface. We used the implicit locally one-dimensional frac-
tional step difference schenfi#4] with a second order approxima-
tion on the space grid intervalx and a first-order approximation
on the time grid intervalAt. We usedAt=0.2 andAx=Ay=0.25

FIG. 2. Panel A illustrates the null clines of the reaction-
diffusion system. We considar as similar to the transmembrane
potential of an excitable cardiac or nerve cé(ly) is similar to the

for a 300<300. The medium parameters were0.01,y=7, m;=0, . ) .
- current-voltage relationship of the cellular excitation process\and
m,=0.85,m3=3.2,«=2.76. For these parameters, the critical value. " .~ . . i ;
is similar to the slow recovery current. The functibfu) is a piece-

of A at the transition from wave-front—obstacle attachment to wave- .~ . . -
. wise linear function, where the slope of each linear elermarfers

front—obstacle separation was\.;;=0.86. In panel A, o . : .
. to the rate of the fast excitation process and influences media excit-
A=0.91>\;;, and this sequence shows that as the wave passes the ..
. S ability. The slopey refers to the rate of the slow recovery process.
obstacle, wave-front—obstacle attachment is maintained and even- . . . . ok
. . ~Panel B illustrates the relationship between the medium excitability,
tually the wave propagates toward the medium boundaries and dies, . o . .
o as determined by, and the excitation wave. The potentiglx) is
In panel B,A=0.77<A¢; and itis seen that as the wave front PaSSES.hown for the initial conditiorit=0, rectangular pulgeand at four

the end of the obstacle, there is an insufficient charge within th '

S ‘?trtim . An initial condition X,t=0)=m, for a short stimu-
wave front to maintain wave-front—obstacle attachment. Conse-ae es al condition b (x,t=0) 2 for a short stimu

Iaéion region. At subsequent times, the potential can be seen to
quently, as the wave passes beyond the obstacle, the wave front an . i .
the obstacle separatthe wave tip is “pulled” from the obstacje ncrease in amplitudéo m;) as well as propagating away from the

. . ; stimulation site. For high excitabilith=1.0 the wave develops
with subsequent formation of a spiral wave. ! . 7
more rapidly and propagation velocity is greater than for the smaller
valuex=0.75.

controls one aspect of excitability by determining the maxi-

mum current that is available to excite adjoining regions of

the medium: larger values of result in a more excitable medium that are essential for our analysis: the critical re-

medium while smaller values of result in a less excitable gion Ly which is the minimum region of the medium that

medium[Fig. 2(B)]. Excitability is also influenced byn,, must be excited before a wave front can avoid collapsing

m,, andmy, the zeros of (u) with respect to the equilibrium [Fig. 3(A)]; and the critical value o¥/, V;, associated with

value of the recovery variabN,. A highly excitable me- wave-front propagation with a velocity of zef&ig. 3(B)].

dium is determined byn,—m;<my;—m; . The factorsyand  The critical excitation regiorL is related to the minimal

&, are relaxation parameters anel1. wave-front thickness of a stationary propagating wave,
We consider several additional properties of an excitablevhere L ; is the wave-front thickness associated with the
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FIG. 3. Panels A and B demonstrate the relationship between the critical values of the recovery\¢yfnerimimal excitation length
L for propagation of an excitation pulse and the front thickigssPanel A illustrates the sensitivity of successful propagation with respect
to the size (AX) of the excited region. The rectangular pulse represents the initial condition. When the length of the excited «dgion
the excitation pulse collapsé®p of panel A,L<Lp) and when the length of the excited regibir L the excitation pulse grows and
propagates away from the stimulation dit®ttom of panel A. Excitation of the critical lengtih.p (panel A, middleg results in formation of
a nonpropagating excitation pulse of minimal thicknegs,2. Panel B illustrates the effect of the recovery current on propagation of a
trigger wave(e=0). ForV<V.;, excitation results in an expanding wave away from the stimulation regppncurvey. WhenV>V,,; the
initial excitation results in a collapsing waybottom. WhenV=V_; the resulting pulse does not propagate and this condition reflects a
perfect balance between the reaction and diffusion charges feeding the front region and the loss of charge into the adjacent rested medium.
In this case, the wave front thickness is equal kg2 as shown in panel Adifferent scalg

zero propagation velocityl2]. The critical value of the re- layer during its formation timd while the boundary-layer

covery curren¥,,; occurs when the area 6fu) betweerm;  areaA, and perimeteP, increased as a step function of time

andm, is equal to the area df(u) betweerm, andm; [11]. as shown in Figs. ®), 6(C). The accuracy of this approxi-
Figure 4 illustrates the temporal evolutigmanels 1-fof ~ mation is of the order o>~(L.;)%(A)? in space and in

a wave-front—obstacle collision leading to a wave-front—time.

obstacle separation as the wave passes the end of the ob-Whether the wave front “sticks” to or separates from the

stacle. Panels 1-3 reveal curling of the wave front arounabstacle boundary depends on what we call a charge balance

the corner of the obstacle and extension of the wave-front tiglerived from the integral form of Eq$l), (2) obtained by

adjoining the obstacle surface. Tip extension temporarilyaveraging them in time over

halts at the corner of the obstaclganels 3 and ¥while the

rest of the wave front continues to propagate. During the

time that the wave tip is developing near the corner, the Cg=Qs—Q., 3

wave back approaches the tip regiganels 4,5 Only after

the wave back reaches the end of the obstacle does the entimdaere Qg represents both the “source” charge available

wave pull away from the obstacle corngranel 6. within the incident wave front of length; and the charge
Focusing on tip formation and the movement seen in paneeveloped by the reaction within the boundary layer of

els 3—-5(Fig. 4), we see that the incident wave separates fronlength L,; and Q, represents the “load” charge require-

the obstacle when the portion of the wave-front tip adjacentnents that must be overcome in order to ignite the boundary

to the corner of the obstacle has zero velocity oriented parayer. The diffusive charge that flows from the wave-front

allel to the obstacle boundary. Under conditions of zero vefegionAg is determined by the time average potential gradi-

locity, the wave-front thickness is not that of a stationaryent between the wave fronl E (m;+mjz)/2] and the bound-

propagating wavé ; but is equal to the smaller critical value ary layer 4=m,) so that

of the wave-front thicknesk,; described above. The wave

front at the obstacle corner shown in panels 3 and 4 forms a

thin (relative to the length\ of the whole wavg boundary Qsp=Ag(Mz—m,)/2, 4

layer with thickness on the order bf,; which separates the

excited and unexcited portion of the medium near the obwhereAg~L ? is the area of the incident wave front adjacent

stacle corner. to the obstacle surface. Due to the near zero velocity of the
In order to simplify the analysis of the diffusion fluxes boundary layer, recovery curredkV=(V—V,,) develops

within the boundary layer we discretized it with squares ofwithin the boundary-layer region of areg with the same

orderL ;; which formed a piecewise rectangular approxima-time scale as the excitation procg$8]. AssumingAV to be

tion of the boundary layer with a characteristic curvatureequal to(V;;—Ve,) and constant over, this amount of

<1/ (Figs. 5, 6. We assumed that the spatial potentialcharge must be offset by the reaction part of the source

gradient (n;—m;)/L; was constant within the boundary charge described by
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which describes the balance between the source charge and
the charge required to excite the boundary-layer region. The
area and perimeter functions are determined by the angle of
the obstacle relative to the wave front as described in Ap-
pendix B.

Formula (8) indicates that the transition between wave-

FIG. 4. The temporal sequence of wave-front—obstacle interacfront—obstacle separation and wave-front—obstacle attach-
tion resulting in separation of the excitation wave from the obstaclenent, i.e., wher€€;=0, can be altered by varying any of the
(time sequence corresponds to panel numbers).1rénels 1-3  medjum parameters. WheBg>0, there is sufficient diffu-
show the initial curling of the wave front around the corner of the gj5p, charge within the wave front and reaction charge within
obstacle and development of the wave @ipad boundary layér  ha houndary layer to overcome the charge that leaks from
a_mdjc;ining .the obstaﬁle su(;fa;:eﬁ In Eanells 2;\1’ t:e tip rerpar:ns relathe boundary layer resulting in extension of the wave tip.
tively stationary at the end of the obstacle while the rest of the wav i oy
continues to propagate, thus extending the tip in the direction of mﬁ"c’;fg gllgefj%l”:g?‘\rgsl?olpsvuafcglzgtg(?gr?s-{(rj?lntrgg?lrt?r?gt?nc\)/://Z\r/_e-
incident wave. As the wave back passes the end of the obstac Cont—obstacle separation. In terms of t,he wave velocity

corner(panel 9 the tip can be seen to be fully formed. As the wave v .
continues to propagate, the tip eventually is unable to maintairYVhenC>CC”‘(CC”‘_C|’\=)\cm) thenCg>0, and propagation

contact with the obstacle boundary and becomes unattagaeel  around the corner at the wave-front—obstacle boundary suc-
6). The slower propagation of the tip results in curling and forma-ceeds while wher€<C_;;, thenCg<<0 and local propaga-
tion of a spiral similar to that displayed in Fig(B). In order to  tion at the corner of the obstacle—wave-front interface fails
demonstrate separation for a different set of paramétermpared  and the wave separates from the obstacle.

to those used in Fig. )l for this illustration we usec\=0.98, For a range of medium parametéssy,a,\,6) we can use
£=0.03,a=2.76, wherer;=1.13. Cg=0 to determine critical contour®.g., as a function of
and\) that separate regions of wave-front—obstacle attach-
Qsr=AL(Verii— Veq), (5) ment from regions of wave-front—obstacle separation, i.e.,

whereCy is equal to zero.
) _ _ We evaluated the accuracy of the critical propagation ve-
whereA_ ~ L the time average area of the developing loadiocity, C,; derived from the roots o€5=0, by comparison

boundary layer. . . _ with the numerical estimates @f.;, associated with the tran-
The load charge requirement is defined as the charge thaftion from wave-front—obstacle attachment to wave-front—
leaks from the perimeter of the boundary layer, obstacle separation. Figure$AJ, 7(B) illustrates the theo-
retical predictions[we evaluated Eq(8) with Cg=0, to
QuL=PL(Ms—m)/L o, 6) compute\.;; and Eq.(A2) to computeC,,;;] and the numeri-

cally determined valuegircles, squargdor different angles

6. These experiments revealed good agreement for values of
where P, ~L;; is the time average perimeter of the load £<0.04.
boundary layer exposed to the adjacent medium at equilib- Our choice of a piecewise linear obstacle was motivated
rium conditions. With these components we can write theby the desire to understand the general role of the obstacle
equation forCg as curvature in altering the wave tip charge balance between the
sourceQg and the loadQ, . In addition to simple piecewise
linear obstacles, theoretical predictions allow us to estimate
the critical separation parameters for obstacles of an arbitrary
shape. Since we found that separation evolves within the
Cg=Ag(M3—M;)/2+ AL (Verit— Veg) — PL(Ma—mMy)/L iy boundary layer which is of the ordés , the obstacle bound-
ary can be approximated by small linear segments of the
order ofL;. The local angled between linear segments can
be readily linked to a local curvature radiRs,,, associated
with the local angle apex

Cg=QsptQSR-Q,

In order to remove the dependenciesfqf, A, andP, on
the wave-front lengthé; and L we divide and multiply
each coefficient by its respective measure. After substituting

the values of_?, L2, andL ;, from Appendix A into(7), we R — L )
get UV 2sin(6/2)
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FIG. 5. Schematic representation of the relationship between the source region within the wave front and the temporal formation of the
boundary layer following the collision between a wave and an obstacle oriented parallel to the wave yétogityPanels A and B show
source regiongsquares of areAs=2L ? with shading formed by a portion of the incident wave frofwtave-front thickness ) adjacent to
the obstacle surface. PaneltBt; shows the intermediate location of the wave front as it advances around the obstacle corner. During this
time charge flows out from the source region and forms the first portion of the boundary layer with afLagga@qual to that for= /2.
While time increases tb=t, (panel Q the boundary layer continues to grow forming a tip sticking near the obstacle corner. The whole
boundary-layer region is approximated by a piecewfsequaresrectangular strip with a width equal ta.;; and an area equal tq5)>.
The leading edge of the boundary layer is formed by linear segniavitsM N, andNQ. The propagation velocity of thkM segment is
equal to zero. The perimeter of the leading edge of the boundary Bayand its area\| extend as step functions bfchanging in time as
shown in panel D during the boundary layer formation titpe to=2At.

This equation highlights the relationship between thepotentially important. Following these initial observations,
wave-front properties and the curvature of the obstacleAgladze et al. [9] experimentally probed the nature of
When the local radius of curvature of the obstacle is smallewave—obstacle collisions using the Belousov-Zhabotinsky
than that defined by Eq9), then following a wave-front— (BZ) reagent in a medium containing obstacles. They dem-
obstacle collision, wave-front—obstacle separation will occuionstrated that for a fixed angle of incidence between the
and a spiral wave will possibly develop. wave front and obstacle, there was a critical excitation fre-

Pertsov and co-workell$,7] were the first to note with quency (> control frequency where the wave-front—
numerical studies, the critical role excitability played in obstacle separation occurred and new spirals formed. Our
events following wave-front—obstacle collision and thatinterpretation is that the increased frequency of excitation
events occurring within the wave front at the wave tip wereresulted in a slowed propagation and an obligatory reduction

to >t
B (o] Perimeter: P = KM + MN

PL=dlorit |
Lerit P = 3Lcrit
- '<—

Obstacle K M PO |
T heott—— ot t
L L Al
Area Approximation
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FIG. 6. Formation of a load boundary layer for the piecewise unexcitable obstacle with a righvangbetween its linear segments.
Panel At=0 shows a source regiofsquare of are#\g= L# with shading formed by a portion of the incident wave frofwave-front
thicknesd_ ;) adjacent to the obstacle surface. PanékR\t shows the wave front advanced behind the obstacle corner. During this time the
charge flows out from the source region and forms the load boundary layer between the obstacle surface and the incident wave front. The
fully developed boundary layer region is approximated by a piece@isquaresrectangular strip with a width equal tq.;; and area equal
to 3L The leading edge of the boundary-layer region is formed by the linear segkighendMN. A propagation velocity of thé& M
segment is equal to zero. The perimeter of the leading edge of the boundar?|agad its areadd| extend as step functions bthanging
in time as shown in panel C during the boundary layer formation tipreto= At.
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1.00 vatureK =1/R.,, for differente. HereR, is the local curvature

radius which is given by9) and y=7, «=2.76 are the medium

parameters.
0.75 |

in L; until the critical valug(associated with separatipwas
050 1O O numeric results achieved. Si.milarly, in stgdies of the interactio_n of a wave in
the BZ medium with a fixed obstacle of varying curvature,
Gomez-Gesterit al. [10] showed that varying the excit-

analytical results

025 ability altered the critical angle at which wave-front—
obstacle separation occurred. The dependenc€ gf on
008420 0010 0.020 0.030 0.040 K= 1/Rcun,.shown in Fig. 8 is in qgalltatlve agreement with
€ the experimental observations in the BZ excitable me-
G dium[10].
In conclusion, the present analysis indicates that wave-
1.25 . oo
o front—obstacle separation occurs within the small boundary
ont layer that links the wave tip with the obstacle surface. Con-
1.00 ditions for wave-front—obstacle separation are determined by
the relationship between the reaction-diffusion flows within
0.75 the boundary-layer region which is of the order of the wave-
front thickness. The transition between wave-front—obstacle
separation and wave-front—obstacle attachment can be al-
0.50 . ;
tered by varying any of the medium parameters or the ob-
oo _ " stacle geometry. The present theoretical study permits a
0.25 - umeric results comprehensive determination of the critical values of the
analytical results d
medium parameters and obstacle geometry for wave-front—
0.0009 s ‘ s : obstacle separation, which was an open problem.
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FIG. 7. The dependence of the critical wave-front propagation ACKNOWLEDGMENTS

velocity C;; for wave-front—obstacle separation, as a function of . . . .
the model parametes while y=7 anda=2.76. Solid and dashed We wish to acknowledge the critical assistance provided

lines represent the analytical approximation@g; where g is 0¥ V- I Krinsky, V. N. Biktashev, and A. M. Pertsov. Their
the root ofCz=0, and the circles and squares represent numericallfitical reviews and discussions were helpful in clarifying
determined values. Each curve ©f,;, as a function of separates OUr results. This research was supported in part by Grant No.
the plane into two regions: (1) for wave-front velocities below the HL32994 of The National Heart, Lung and Blood Institute,
line, a wave-front—obstacle separation occurs; é)dfor wave-  NIH.

front velocities above the line, a wave-front—obstacle attachment is

maintained. Panel A illustrates this dependence for an obstacle APPENDIX A

aligned parallel to the incident wave velocity vectér= ). Panel B . ) ) .

illustrates this dependence for an obstacle aligned perpendicular to N [12], we derived one-dimension&lD) estimates for
the incident wave velocity vectd@=m/2). Panel C illustrates the the wave-front thicknesk, the front thickness of a wave
interpolated dependence for obstacles with intermediate anglddfopagating at zero velocity,;;, and the critical value of the
6=m4 and=3x/4. The numerical experiments reveal good agree-fecovery variable associated with zero velodiyr a piece-
ment with the analytical approximation for all angles. wise linear fu) shown in Fig. 2, V. which are given by
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C2+4n |12

A

Lf:(T

Lcritzzo'/\/x'
a—1
2 )

Verit— Veq: A(my—my)

mz—m,

m,—m;y’

o=In[MY(mz—my)], (A1)
where C is the pulse velocity in a 1D excitable call®r
f(u) shown in Fig. 2 andm;, m, andms are the zeros of
f(u) with respect tov/,,. For the 2D boundary layer analysis
used here, we assume the 1D front parameters to be equal
the 2D boundary layer parameters.

The factoro is a constant which defines the end points of

the exponential wave front which are required to estinhate
andL . [12]. The factorM is a threshold that defines where
the wave-front startsnj; + M) and ends ifh;— M), respec-
tively. The value of the threshold relates to a certaifiold
change in the wave-front amplitude;—m, . Here we used
the value o=1+In2 which is associated with ae-fold
change.

Under the conditions when the wave-front thickness of"?

the incident wave is sufficiently largdigh excitability) one
can estimate the incident wave velocity from that of a trigge
wave, a wave that propagates while the slow recovery cu
rent remains at the equilibrium valué.,(e=0). For the
piecewise linearf(u) shown in Fig. 2 this velocityCy is
given byf12]

Co=(a—1)yN a.

(A2)

When the medium properties are near the separation—r‘{?)_D
separation boundary, it is necessary to adjust for the influ:

ence of the slow recovery curre¥ton wave-front velocity.

It was shown i 12] that the recovery current increases dur-
ing the front formation timer=L;(C,)/C, by an amount:
AV=¢gy(mz—m;) 7. Using(Al) and(A2) and rewritingAV

in terms of medium parameters we get

at+l

AVIS’yO'(m3—m1) m

(A3)

From this equation, we estimate new root$ of f(u) with

respect toVeq+ AV which provides a value of excitability

*
.

a* =(mg—my—AV/\)/(my,—m;+AV/N)
(A4)

Expanding{1+AV/[A(m,—m;) ]} ! and keeping only the
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:I_ine) even at\=0. Thus the function® /L.; and A /Lg;

APPENDIX B

We will seek functionsAg, P, and A_ in terms of a
biquadratic polz}/nomial on (S)=S(#)/L?, ¢;(6)=F,
+Gi(S)*+H(S)*, whereS(#) is the area of the source re-
gion as a function ob. CoefficientsF;, G; andH; are un-
known constant$i =1,2,3 forAg, P, andA__, respectively
which can be determined, for instance, from the charge bal-
ance for three particular anglesp=0, 8=, and 6=/2.

We assume that for intermediate angles suchnéé
<6<3m/4 and Jr/4<f<m, 0<6<u/4, (S) is directly pro-
portional to the tangent function: tafw/2—6) and tar,
respectively. Taking this into consideration,one can deter-
mine the equation fo¢S)

(tan @
2
tan(7/2— 6)
Y/
tan(7/2— 6)
Y
tan 6

24—,

o<O<=ml4
to
TlA< s w<2
(S)=1 (B1)
ml2<0<37wl4

3mld< <.

\

For a zero angl® the source region vanishéS) =0 since
o charge flows around the obstacle corftiee obstacle is an
infinite straight ling, consequentlyAs=0, F;=0. For this
case an excitation wave attaches to the obstésti@ight

are of the order 0O(1) at =0 and without loss of general-
ity one can assume th&t, andF; are equal td_ ., andL 2,
respectively.

Figure 5 illustrates the details of the geometric consider-
ations when the obstacle is aligned parallel to the wave-front
velocity vector(6=). Shown is the time dependent devel-
ment of the source regigshaded squares of length at
0 andt=t,, Ag=2L ?) of the incident wave front adjacent
to the obstacle surface and the load boundary-layer regions
three boundary-layer regions shown in FigBh growing to
five boundary-layer regions shown in FigGJ] We assume
the boundary-layer formation time to @e=2At [Fig. 5D)]
and approximate the development of the boundary-layer area
as shown in Fig. @) so thatA_ =L2,(3At/4+ 15At/2)/
2At=33/8.2;.

Leakage of charge occurs from the perimeter of the
boundary-layer aredKMNQ in Figs. 5B), 5(C)]. We
approximate the development of the perimeter as shown
in Fig. 5D) and the time averaged value of
PL=Lgi(5At/A+ 21At/2)[2At=4T/8 .

Figure 6 illustrates the geometric details #+ /2 when
As=L? A =L2(A2+9AU4)/At=11/4.%, and P =
L cit(3AY4+12At/4)/At=15/4 ;. Equating ®;(6) with the
coefficientsAg, A, and P, in balance Eq.(7) for =0,
6=m/2 and =, we have

As=LH(7(S)*—(9)")/6

first-order term, the adjusted velocity can be written using

Eq. (A2) as

y(ak)™
2

C=Cy—{¢e where (=c

PL =Ll 1+(313(S)*— 4% S)*)/96],

A =L2,[1+(199/S)%—31(S)*)/96]. (B2)
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