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Boundary-layer analysis of a spiral wave core: Spiral core radius and conditions for the tip
separation from the core boundary
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The size of a spiral core is predicted on the basis of a boundary-layer analysis of a spiral tip in the
nonkinematic limit. Dependencies of a spiral core radius on medium parameters are found analytically and
numerically for two models of excitable media. It is shown that the core radius is determined by the conditions
for the tip separation from a core boundary. It is found that a core radius depends on all currents that are active
during a wave front formation associated with the diffusion fluxes coupling neighboring elements of excitable
media. Varying currents that activated only after wave front formation do not result in a significant altering of
a spiral core radius.@S1063-651X~97!51010-5#

PACS number~s!: 47.32.Cc, 42.15.Dp, 82.40.2g
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For many excitable media, including cardiac tissue,
diffusion fluxes coupling neighboring elements of excitab
media reside within the wave front of thickness that is mu
smaller than the local length of the spiral wave. The dyna
ics of such waves can be described by the kinematic the
when the wave front radius of curvature is larger than b
the wave front thickness and the excitation wavelength@1#.
However, this theory is not applicable in some importa
physiological cases when core radii are smaller than the l
wavelength near a spiral wave tip. Such a limit is beyond
assumptions of kinematic theory, since in this case the lo
radius of curvature is comparable to the wave front thickn
and much smaller than the local length of the wave its
@2–4#.

Recently we developed a boundary-layer analysis tha
lowed us to describe an excitation wave tip motion in t
limit of large local curvatures. We considered curvatures t
were of the order of 1/Lcrit , where Lcrit was the minimal
wave front thickness associated with a nonpropagating p
wave front@2,4#. We found that a spiral wave tip began
meander at the minimal spiral wave core radius which w
equal toLcrit/2 @4#.

In this paper we extend this analysis and introduce
idea that the spiral core size is determined by medium
rameters when the tip is not able to maintain its movem
along the core boundary.

We focused on modeling with the FitzHugh-Nagum
~FN! class model,
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where u(x,y,t) is a dimensionless function describing th
transmembrane potential in a biological excitable cell a
V(x,y,t) is a dimensionless function similar to a slower r
covery potassium current. We used a piecewise linear
proximation for the current-voltage relationshipf (u)5
2l(u2m1) for u,m2 and f (u)52l(u2m3) for u.m2 .
The excitability of tissue was controlled by the slope
f (u), l, e and by the parametera5(m32m2)/(m22m1) as
well. The recovery rate was controlled by the parameterg. In
addition we used the Beeler-Reuter~BR! model @5# to com-
pare our observations with a biologically realistic membra
current kinetics. The BR model consists of a fast sodi
current and two potassium currents, the inward rectifiergK,
which is always active and the delayed rectifier,gX, which
activates only after the action potential is initiated. Thus,
could alter the action potential duration~APD! either inde-
pendently of wave front formation by varyinggX or simul-
taneously with wave front formation by varyinggK.

Let us consider a spiral core with a circular bounda
Under the assumptions of the conventional kinematic
proach@1# one can neglect the wave front thickness and c

c-

FIG. 1. Rotation of a spiral wave around a circular core bou
ary in the kinematic limit. The excited region is bounded by
infinitely thin wave front which attaches the infinitely thin wav
back at the pointQ. This point is an instantaneous center of a spi
tip rotation.
R3757 © 1997 The American Physical Society
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sider the excited region of an excitation wave as an a
which is bounded by the infinitely thin wave front and wa
back. In this case a spiral tip rotates around a circular c
and wave front, wave back, and recovery tail meet at poinQ
as shown in Fig. 1. The rotation of the tip around the poinQ
is superimposed on the motion along the direction tangen
to the core, so at each moment an excitation wave rot
about pointQ as about an instantaneous center of rotati
This point has the only velocity component in the directi
tangential to the core boundary. The normal componen
the direction towards the core center is equal to zero~no-flux
core boundary!. In this limit, the core radius can go to zer
while the tip curvature goes to infinity@6#.

However, for large spiral tip curvatures~core radii which
are of the order ofLcrit! one has to take into account that th
wave front and wave back bounding the excited region of
excitation wave have a finite width. Since the tip propagat
velocity is very small, one can assume that this width is
the order ofLcrit , and discretize the tip area by squares w
a side which is equal toLcrit ~Fig. 2! @2,4#. In this limit the
excited region attaches to the neighboring wave front
wave back which, unlike a single kinematic pointQ, join
along the transition curvePP1 . Wave front, wave back, and
a recovery tail meet at the pointP.

Unlike Q in the kinematic limit, the pointP traces a circle

FIG. 2. Spiral wave tip rotation for large tip curvatures whi
are of the order ofLcrit ~beyond kinematics!. ~a! ~color! demon-
strates numerical spiral wave solution of FN model forl50.86,
g57, a52.76, and«50.018 ~we used a fractional-step implici
method@2,4#!. Black circle represents a core boundary. Blue a
shows the excited region, thin yellow strip forms the wave front a
wave back. Red and reddish areas correspond to a recovery ta~b!
demonstrates tip boundary layer region adjacent to a core boun
PP1 is the transition curve where wave front meets wave back
a recovery tail. The segments of wave front and wave back adja
to PP1 move in the directions shown by arrows.
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that does not lie entirely in the no-flux region. However, o
can complement the tip by a neighboring no-flux core a
and shift a tip-core boundary to a chord of theLcrit square
while providing no additional charge flowing into the tip
The extended tip area includes a core segment located
tween the line, containing the pointP, and a chord of the
Lcrit square~Fig. 2!. This method simplifies analytical tip
core no-flux boundary conditions so that no-flux tip-co
lines coincide withLcrit chords, as shown in Fig. 3~a!. These
chords form a piecewise linear approximation of the no-fl
core boundary. Such an approximation is valid for su
ciently small Lcrit when l;O(1) (Lcrit52s/(l)1/2, where
s511 ln 2, @2,4#!. The angleu betweenLcrit chords @Fig.
3~b!# determines the conditions for the tip separation fro
the core boundary. Any given set of medium parameters
termines the critical angleucrit when the tip is not able to
maintain its movement along the core boundary with rad
Rcore.

Similar behavior was described in studies of tip separat
from a no-flux surface of an unexcitable obstacle that w
specified by a no-flux boundary condition along its bound
@2,4#. In these studies we derived an analytical approxim

FIG. 4. Dependence of a spiral core radiusRcore ~FN model! on
the fast current parameterl for different g: 12g56, 22g57
(a52.76, «50.018!. Circles and squares represent the numeri
results. Solid lines represent the analytical analysis@Eqs. ~3!, ~4!,
and formula~5!#.

a
d

ry.
d
nt

FIG. 3. This demonstrates the rotation of a spiral wave
around a no-flux circular core boundary. The recovery tail
hatched, an excited region is double hatched. Both the tip and
core boundary are discretized by linear segmentsLcrit ~a!. The
source region of the wave front adjacent to the tip~square with a
side of L f! accumulates charge that flows out into the bound
layer. L f is the wave front thickness of a straight wave front.~b!
shows the angleu between two adjacent segments of a piecew
linear approximation of the core boundary.
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tion describing a tip movement along a piecewise linear
excitable obstacle and found the conditions associated
the tip separation-no separation transition. Whether the w
tip maintained the attachment or separated from the no-
boundary depended on the balance of diffusion fluxes
tained by averaging Eqs.~1! and ~2!.

We averaged the fluxes within a piecewise rectangu
approximation of the boundary layer@tip area shown in Fig.
3~a!# over the tip formation time while it extended betwe
the adjacent segmentsAB and BC @Fig. 3~a!#. From the
charge balance and averaging procedures we derived
equation from which one could find the medium paramet
associated with the tip separation from the no-flux piecew
linear surface@Eq. ~3!#,

FIG. 5. Dependence of a spiral core radiusRcore on a slow
current parameterg ~analytical predictions,l50.82, a52.76, «
50.018!.

FIG. 6. Dependence of the APD on the Beeler-Reuter cur
kinetics. Curvesa,b,c,d correspond togNa52.2 andgK50.325,
gX54.0 ~meander!; gK50.35, gX50.8 ~no meander!; gK
50.325,gX50.8 ~meander!; gK50.35, gX520.3 ~no meander!,
respectively. Curvee corresponds togNa53.0 andgK50.35,gX
50.8 ~meander!.
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S f 1~u!2 f 2~u!
a11

2s2~a21! Dl3

1 f 3~u!S ~a11!3

4a~a21!
l22«

g~a11!5s

4a2~a21! D50. ~3!

Functionsf 1(u), f 2(u), and f 3(u) are determined in@4#.
The first and the second functions describe the average a
dependencies of the perimeter and the area of the tip, res
tively. The third one describes the area angle dependenc
the source wave front region adjacent to the spiral tip@Fig.
3~a!#.

The local angleu between the linear segments of the n
flux boundary can be readily linked to a local curvature
dius Rcurv associated with the local angle apex@Fig. 3~b!#

Rcurv5
Lcrit

2 sin~u/2!
. ~4!

For any given set of medium parametersl, g, «, anda Eqs.
~3! and ~4! determine the critical angleucrit and the local
radius of curvatureRcurv(ucrit) associated with the tip
separation-no separation transition. The critical angle ran
from p to 0 ~Eqs. 3 and 4!. The largerucrit the smaller the
radius of curvature associated with separation-no separa
transition. Whenucrit is equal top the separation-no separa
tion radius of curvature approaches its minimal valueLcrit/2
@4#.

The tip will separate from the no-flux boundary whe
Rcurv,Rcurv(ucrit) and will maintain the attachment to
when Rcurv.Rcurv(ucrit). The minimal curvature radius
which is associated with the attachment to the no-flux bou
ary is equal toRcurv(ucrit).

Using this analysis for a piecewise linear approximati
of a no-flux boundary of a spiral core, one can find the rad
of a spiral core, which is given by

nt

FIG. 7. Behavior of a spiral wave core near meandering tra
tion for the Beeler-Reuter model.~a! gK50.325,gX54.0 ~mean-
der!; ~b! gK50.35, gX50.8 ~no meander!; ~c! gK50.325, gX
50.8 ~meander!; ~d! gK50.35,gX520.3 ~no meander!. Varying
of a delayed rectifier currentgX results in significant altering of the
APD ~Fig. 6!. However, a spiral core radius changes insignifican
@~b! and ~d!#.
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Rcore[Rcurvuu5ucrit
. ~5!

Formula~5! indicates that a spiral core is bounded by a mi
mal size circular trajectory when the tip is still able to ma
tain the attachment to a boundary of a spiral core. Notice
with given medium parameters andu,ucrit a tip rotation
radius is decreasing towardRcurvuu5ucrit

due to the charge
imbalance between the boundary layer and adjacent med
With R[Rcurvuu5ucrit

the charge balance is attained. W
found that analytical estimation@Eqs. ~3!, ~4!, and formula
~5!# is in good agreement with numerics~Fig. 4!.

Equations~3! and~4! demonstrate that all medium param
eters control the boundary layer formation, affecting the a
of the tip and the radius of the spiral core@formula ~5!#.
Dependencies of the core radius on fast and slow cur
parametersl andg are shown in Figs. 4 and 5, respective
Figure 4 demonstrates the decrease of the core radius wh
fast current parameterl increases. Unlikel, the increase of
the slow current parameterg results in the increase of th
radius of a spiral core~Fig. 5!.

The analytical analysis of a spiral wave core developed
the framework of the FN model demonstrates a crucial r
of the medium parameters which control a boundary la
formation. However, this two variable model~parametersl,
g! does not provide information about the relationship b
tween a spiral core and other currents that are not ac
during wave front formation.
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In order to study this relationship we chose the BR mo
and performed numerical simulations which allowed us
alter the wave front formation independently of the AP
The APD was changed by varying both inward and delay
rectifier currents (gK,gX) ~Fig. 6!. We focused on the dy-
namics of a BR spiral core near its meandering transiti
Numerical experiments demonstrated that altering the
layed rectifier currentgX, which activated after wavefron
formation, changed the APD but had minimal influence o
spiral core radius~Figs. 6 and 7!.

In summary, we have developed an analytical appro
for estimating the size of a small spiral wave core when
radius is of the order ofLcrit . We have shown that the cor
radius is determined by the conditions for the tip separat
from the core boundary. It is found that the core radius
pends on all currents which are active during wave fro
formation associated with the diffusion fluxes couplin
neighboring elements of an excitable medium. Varying c
rents that activated only after wave front formation do n
result in a significant altering of a spiral core radius. Th
analysis provides new information about reentrant card
arrhythmias.
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