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Boundary-layer analysis of a spiral wave core: Spiral core radius and conditions for the tip
separation from the core boundary
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The size of a spiral core is predicted on the basis of a boundary-layer analysis of a spiral tip in the
nonkinematic limit. Dependencies of a spiral core radius on medium parameters are found analytically and
numerically for two models of excitable media. It is shown that the core radius is determined by the conditions
for the tip separation from a core boundary. It is found that a core radius depends on all currents that are active
during a wave front formation associated with the diffusion fluxes coupling neighboring elements of excitable
media. Varying currents that activated only after wave front formation do not result in a significant altering of
a spiral core radiug.S1063-651X97)51010-5

PACS numbeis): 47.32.Cc, 42.15.Dp, 82.40g

For many excitable media, including cardiac tissue, thewvhere u(x,y,t) is a dimensionless function describing the
diffusion fluxes coupling neighboring elements of excitabletransmembrane potential in a biological excitable cell and
media reside within the wave front of thickness that is muchv(x,y,t) is a dimensionless function similar to a slower re-
smaller than the local length of the spiral wave. The dynameovery potassium current. We used a piecewise linear ap-
ics of such waves can be described by the kinematic theorgroximation for the current-voltage relationshifyu)=
when the wave front radius of curvature is larger than both—\(u—m;) for u<m, andf(u)=—X(u—ms;) for u>m,.
the wave front thickness and the excitation waveleri@lh  The excitability of tissue was controlled by the slope of
However, this theory is not applicable in some importantf(u), \, e and by the parameter=(mz—m,)/(m,—m;) as
physiological cases when core radii are smaller than the localell. The recovery rate was controlled by the parametén
wavelength near a spiral wave tip. Such a limit is beyond theaddition we used the Beeler-Reut@®R) model[5] to com-
assumptions of kinematic theory, since in this case the locgdare our observations with a biologically realistic membrane
radius of curvature is comparable to the wave front thicknesgurrent kinetics. The BR model consists of a fast sodium
and much smaller than the local length of the wave itselfcurrent and two potassium currents, the inward rectii€r
[2-4]. which is always active and the delayed rectifigk, which

Recently we developed a boundary-layer analysis that alactivates only after the action potential is initiated. Thus, we
lowed us to describe an excitation wave tip motion in thecould alter the action potential duratigAPD) either inde-
limit of large local curvatures. We considered curvatures thapendently of wave front formation by varyirgX or simul-
were of the order of 1/, wherel .y was the minimal  taneously with wave front formation by varyirg.
wave front thickness associated with a nonpropagating plane Let us consider a spiral core with a circular boundary.
wave front[2,4]. We found that a spiral wave tip began to Under the assumptions of the conventional kinematic ap-
meander at the minimal spiral wave core radius which wagroach[1] one can neglect the wave front thickness and con-
equal toL /2 [4].

In this paper we extend this analysis and introduce the
idea that the spiral core size is determined by medium pa-
rameters when the tip is not able to maintain its movement
along the core boundary.

We focused on modeling with the FitzHugh-Nagumo
(FN) class model,
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J FIG. 1. Rotation of a spiral wave around a circular core bound-

ary in the kinematic limit. The excited region is bounded by an

infinitely thin wave front which attaches the infinitely thin wave

*Author to whom correspondence should be addressed. Eletack at the poin@. This point is an instantaneous center of a spiral
tronic address: jmstarob@uncg.edu tip rotation.
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/ Aim FIG. 3. This demonstrates the rotation of a spiral wave tip
Region around a no-flux circular core boundary. The recovery tail is

hatched, an excited region is double hatched. Both the tip and the
core boundary are discretized by linear segmdnig (a). The
source region of the wave front adjacent to the(8guare with a
side of L) accumulates charge that flows out into the boundary
layer. L; is the wave front thickness of a straight wave fra(.
shows the angl® between two adjacent segments of a piecewise
linear approximation of the core boundary.

Wave front

that does not lie entirely in the no-flux region. However, one
can complement the tip by a neighboring no-flux core area
and shift a tip-core boundary to a chord of thg;; square
_ : while providing no additional charge flowing into the tip.
g{riu(:stzﬁn?é(rjiiglol_Ci?él(tﬁg\?gdsgﬁtieomag?iﬁ)ngz(():ilglr)igfgqgg- The extended tip area includes a core segment located be-

€ - p_ . ' . tween the line, containing the poift, and a chord of the
vy=7, a=2.76, ande=0.018 (we used a fractional-step implicit L re(Fig. 2. This method simplif nalvtical tin-
method[2,4]). Black circle represents a core boundary. Blue area_crt square(rig. 2. S method simplies analytical tip

ore no-flux boundary conditions so that no-flux tip-core

shows the excited region, thin yellow strip forms the wave front and o . -
wave back. Red and reddish areas correspond to a recoverfptail. lines coincide withL; chords, as shown in Fig(&. These

demonstrates tip boundary layer region adjacent to a core boundar§hords form a piecewise linear approximation of the no-flux
PP, is the transition curve where wave front meets wave back an¢Or€ boundary. Such an approximation is valid for suffi-
a recovery tail. The segments of wave front and wave back adjacef@iently smallL i whenX~O(1) (L= 2a/(\)"? where
to PP, move in the directions shown by arrows. o=1+In2, [2,4]). The angled betweenL .;; chords[Fig.

] ] ) o 3(b)] determines the conditions for the tip separation from
sider the excited region of an excitation wave as an arege core boundary. Any given set of medium parameters de-
which is bounded by the infinitely thin wave front and wave (ormines the critical angld,;; when the tip is not able to

back. In this case a spiral tip rotates around a circular corgyaintain its movement along the core boundary with radius
and wave front, wave back, and recovery tail meet at Qint g

as shown in Fig. 1. The rotation of the tip around the p@nt  “gimjlar behavior was described in studies of tip separation
is superimposed on the motion along the direction tangentiafom a no-flux surface of an unexcitable obstacle that was
to the core, so at each moment an excitation wave rotategsacified by a no-flux boundary condition along its boundary

about pointQ as about an instantaneous center of rotationf 4] |n these studies we derived an analytical approxima-
This point has the only velocity component in the direction

FIG. 2. Spiral wave tip rotation for large tip curvatures which

tangential to the core boundary. The normal component in 5.0

the direction towards the core center is equal to Zroeflux

core boundary In this limit, the core radius can go to zero, Rca,e i

while the tip curvature goes to infinifys]. 40 1 2 O

However, for large spiral tip curvaturésore radii which
are of the order oL ;) one has to take into account that the
wave front and wave back bounding the excited region of an 30 [ o
excitation wave have a finite width. Since the tip propagation
velocity is very small, one can assume that this width is of | |
the order ofL,;;, and discretize the tip area by squares with 2-8 775 ' 0.875 ' 0.875 )

a side which is equal tb . (Fig. 2) [2,4]. In this limit the ) ) )

excited region attaches to the neighboring wave front and FG. 4. Dependence of a spiral core radRig,. (FN mode} on

wave back which, unlike a single kinematic pol@t join  the fast current parameter for different y: 1—y=6, 2—y=7

along the transition curve P,. Wave front, wave back, and («=2.76,s=0.018. Circles and squares represent the numerical

a recovery tail meet at the poift. results. Solid lines represent the analytical analy&igs. (3), (4),
Unlike Q in the kinematic limit, the poinP traces a circle and formula(5)].
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FIG. 5. Dependence of a spiral core radiRg,. on a slow
current parametery (analytical predictionsh=0.82, a=2.76, ¢
=0.018. C

tion describing a tip movement along a piecewise linear un- FIG. 7. Behavior of a spiral wave core near meandering transi-
excitable obstacle and found the conditions associated witf{o" for the Beeler-Reuter model) gk =0.325,9X=4.0 (mean-
the tip separation-no separation transition. Whether the wav‘ée(')j ;8 ((tr’r)le%ﬁ;e;)'?;‘ g?f8'gs(goxr_”f%”g?;(f%g;jgf\/z;ﬁnz
tip maintained the attachment or separate_d fr(?m the no'ﬂuéf a delayed re’ctifier curretgx, results in significant altering of the
bqundary depended on the balance of diffusion fluxes ObAPD (Fig. 6). However, a spiral core radius changes insignificantly
tained by averaging Eq$l) and(2). [(b) and (d)].

We averaged the fluxes within a piecewise rectangular

approximation of the boundary layfip area shown in Fig. a+1

3(a)] over the tip formation time while it extended between f1(0)—f5(60) m) A3

the adjacent segment&B and BC [Fig. 3(@]. From the

charge balance and averaging procedures we derived the (a+1)3 ) y(a+1)%c

equation from which one could find the medium parameters +13(0) 4a(a—1) " " ° m) =0. @
associated with the tip separation from the no-flux piecewise

linear surfacdEq. (3)], Functionsf,(6), f,(6), andf(6) are determined if4].

The first and the second functions describe the average angle
dependencies of the perimeter and the area of the tip, respec-
tively. The third one describes the area angle dependence of
the source wave front region adjacent to the spiral Fijg.

3(@)].
The local angled between the linear segments of the no-
u mv] : flux boundary can be readily linked to a local curvature ra-
0.0 L dius R, associated with the local angle apgdxg. 3b)]
L.
200 - = _ ot
Raun=75 sin(6/2) @
0.0
For any given set of medium parametarsy, ¢, anda Egs.
-20.0 (3) and (4) determine the critical anglé.;; and the local
radius of curvatureR., (6 associated with the tip
—40.0 separation-no separation transition. The critical angle ranges
from 7 to O (Egs. 3 and % The largerd.; the smaller the
~60.0 radius of curvature associated with separation-no separation
800 transition. Whend,,;; is equal tor the separation-no separa-
Tr tion radius of curvature approaches its minimal valyg/2
-100.0 . ' . ' [4]:
0.0 100.0 200.0 The tip will separate from the no-flux boundary when

¢ fus) Reun<Reund b @and will maintain the attachment to it

FIG. 6. Dependence of the APD on the Beeler-Reuter curren?h€n Reun™>Reurnd beri).  The  minimal - curvature  radius
kinetics. Curvesa,b,c,d correspond tggNa=2.2 andgK =0.325, which is associated with the attachment to the no-flux bound-
gX=4.0 (meander, gkK=0.35 gX=0.8 (no meander gK ary is equal toR ¢y Oerit) -
=0.325,9X=0.8 (meandex, gK=0.35,gX=—0.3 (no meandex Using this analysis for a piecewise linear approximation
respectively. Curves corresponds tgNa= 3.0 andgk=0.35,gX  of a no-flux boundary of a spiral core, one can find the radius
=0.8 (meander. of a spiral core, which is given by
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Reor=Reurd =4 - (5) In order to study this relationship we chose the BR model
ort and performed numerical simulations which allowed us to
Formula(5) indicates that a spiral core is bounded by a mini-alter the wave front formation independently of the APD.
mal size circular trajectory when the tip is still able to main- The APD was changed by varying both inward and delayed
tain the attachment to a boundary of a spiral core. Notice thaectifier currents §K,gX) (Fig. 6). We focused on the dy-
with given medium parameters antk 6. a tip rotation hamics of a BR spiral core near its meandering transition.

radius is decreasing towarlg,/y—,_ due to the charge Numerical experiments demonstrated that altering the de-

. . . layed rectifier currengX, which activated after wavefront
imbalance between the boundary layer and adjacent mediu ormation, changed the APD but had minimal influence on a

With R=R ./ 6= the charge balance is attained. We spiral core radiugFigs. 6 and 7,

found that analytical estimatiofEgs. (3), (4), and formula In summary, we have developed an analytical approach
(5] is in good agreement with numeri¢sig. 4). for estimating the size of a small spiral wave core when its
Equations(3) and(4) demonstrate that all medium param- 5 jys is of the order of ;. We have shown that the core
eters co_ntrol the bound_ary layer form_ation, affecting the areq, yius is determined by the conditions for the tip separation
of the tip and the radius of the spiral cofformula (5)].  from the core boundary. It is found that the core radius de-
Dependencies of the core radius on fast and slow curreffengs on all currents which are active during wave front
parameters. andy are shown in Figs. 4 and 5, respectively. fyrmation associated with the diffusion fluxes coupling
Figure 4 demonstrates _the decrease c_>f the core radius Wherhéighboring elements of an excitable medium. Varying cur-
fast current parameter increases. Unlika, the increase of rants that activated only after wave front formation do not
the slow current parametey results in the increase of the yegyjt in a significant altering of a spiral core radius. This

radius of a spiral coreFig. 5. _analysis provides new information about reentrant cardiac
The analytical analysis of a spiral wave core developed iNrrhythmias.

the framework of the FN model demonstrates a crucial role

of the medium parameters which control a boundary layer We wish to acknowledge Yuri Chernyak and Julie Brown
formation. However, this two variable modglarametera,  for useful discussions. This research was supported in part by
v) does not provide information about the relationship be-a grant from the Whitaker Foundation and Grant No.
tween a spiral core and other currents that are not activelL32994 from the National Heart, Lung, and Blood Insti-
during wave front formation. tute, National Institutes of Health.
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