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2. Exact and Approximate Probabilities for Contingency Table with
n, = 20, n, = 20, and Random Column Totals

Exact exceedance probabilities when

Approximate exceedance
probabilities based on

T a,c p=.1 p=.2 p=.3 p=.4 p=.5 T T.
10.417 3,13 .00001 .00033 .00090 .00121 .00110 .00125 .00368
10.000 0,8 .00010 .00108 .00157 .00194 .00224 .00157 .00566
10.000 5,15 (same as above because of tie in T) .00157 .00443

7.025 1,8 .00297 .00917 .00962 .00827 .00727 .00804 .02310
6.667 4,12 .00297 .00921 .01063 .01085 .00949 .00982 .02387
5.227 4,11 .01182 .02259 .02480 .02378 .02045 .02224 .05004
4.444 0,4 .03386 .03372 .03323 .03589 .03857 .03502 11385
4.286 3,9 .03867 .04933 .04522 .03996 .03927 .03843 .08450
3.956 4,10 .03867 .05022 .05326 .04822 .04253 .04670 .09742
3.243 0,3 .08602 .07007 .06868 .07567 .08075 .07172 .22991
3.137 1,5 10327 .09020 .07113 .07574 .08075 .07652 18404
3.135 3,8 .10341 .09930 .08751 .08018 .08127 .07664 .15665
2.849 4,9 .10342 .10252 .10456 .09140 .08423 .09143 17691
1111 1,3 .35180 .33677 .30899 .27336 .26973 29184 59816
1.026 0,1 41752 .34584 .34992 .30028 .27683 .31118 1.00000
1.026 5,8 (same as above because of tie in T) 31118 49957

.960 6,9 41752 .34745 .37498 .34071 .30051 .32719 51363

p = .5, and equals .03857, much closer to the uncorrected
T estimate .03502 than to the Yates corrected estimate
.11385. Table 2 supports Claim 3.

3. WHEN MARGINAL TOTALS ARE RANDOM,
T AND T, PROVIDE DIFFERENT TESTS

The tests indicated by T and T, are equivalent if and
only if for every real number & there is a real number &’
such that the sets of contingency tables yielding T > k
and T. > k' are identical. To illustrate we will return
to the example cited in Section 1. One sample had no hits
out of 20 shots and a second sample had 4 hits out of 20
attempts. If the experiment is conducted at closer range,
one might obtain 3 hits from 20 shots with one radar
device, and 9 hits out of 20 shots with the other radar
device. For purposes of future testing, which range
provides a better discriminator between radar tracking
units?

The statistic T = 4.444 is more extreme for the first
set of observations than T = 4.286 for the second set,
indicating that the longer range tests might provide
more information to enable the two tracking devices to
be compared. However, results are the opposite if T,
is used. A value of T, = 2.976 for the close range tests
is more extreme than 7T, = 2.500 obtained from the
first experiment.

The question is no longer one of choosing between T
and T to obtain better estimates of the true probability,
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In the discussion of hypothesis testing in 2 X 2
contingency tables, Fisher’s exact test is often used as

but rather between T and 7. as a means of ordering
discrepancies in observed frequencies. Now 7 and T,
provide different tests, with different critical regions and
different power functions. Claim 3 now is a moot point.

[Received September 1972. Revised May 1973.]
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the standard against which competing tests are measured.
Statisticians should not be led into a semantic trap by
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The Yates Continuity Correction

the words “exact test.”” It is important to know in what
sense the “exact test’ is exact. We interpret the phrase
to mean that it yields the exact probability of observing
a result identical to a more extreme probability under
the assumption that a particular 2 X 2 table was
generated by sampling from a four-variable hyper-
geometric distribution. It does not give a test with
predetermined significance level exactly «. In fact
because of the discreteness of the hypergeometric
distribution, the observed significance level «* has the
property o* < o, where a* depends on the marginal
frequencies (held fixed) and the exact test is therefore
always conservative. There seems to be no good reason
to use the exact test as the standard of comparison for
competing tests.

The result of Tocher [17] shows that the exact test,
supplemented by randomization to achieve the desired
significance a, is the most powerful test against one-sided
alternatives when both, one or no margin totals are fixed
in advance. Therefore, the randomized exact test should
be the standard to which competing tests are compared.

Even though most statisticians would not use the
randomized test in practice, it could be used for judging
the value of competing tests. Thus we could search for
the best approximation to the most powerful test that
does not require the undesirable feature of randomization
to achieve the desired significance level.

We have performed a few more simulations to in-
vestigate the behavior of T, T,, and the exact test (E).
In addition, we have also made the randomized test (R)
which we can use as the basis of comparison. We have
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1. Comparing Two Binomials-Type 1
Errors in 2,000 Simulations

Test

Na

70

80

90

100

P=1
T 20 77 112 110 94 100 105 9% 89 104
. 3 11 18 31 38 29 49 52 44 47
E 3 28 18 37 38 39 49 62 55 58
R 9 105 94 9% 104 94 102 105 83 95
P=.2
T 68 9 97 99 115 102 117 94 83 123
T, 20 37 40 48 61 52 64 57 48 75
E 20 42 40 62 61 52 69 60 48 77
R 98 94 108 99 108 9% 108 % 78 117
P=23
T 91 99 85 105 97 108 100 113 95 112
T. 28 39 46 56 67 61 59 74 65 86
E 28 46 46 59 67 61 62 74 62 86
R 113 93 84 108 99 98 92 111 92 110
P-4
T 89 111 80 114 113 105 88 80 101 100
T. 26 38 45 56 66 56 59 57 77 72
E 26 47 45 56 66 56 59 57 77 72
R 105 105 86 115 105 103 99 84 98 94
P=5
T 99 82 98 126 119 101 98 98 88 111
T. 31 27 58 73 7 61 77 67 62 83
E 31 38 58 73 71 61 77 67 62 83
R 114 98 9% 102 103 95 103 13 97 9%

2 Sample size for each binomial distribution.

tested against a two-sided alternative, and thus our test
is not in actuality the most powerful test, but its use
conforms to common practice and it should not be far
off the mark.

The simulations shown in Tables 1 and 2 show clearly

2. Test of Independence Type 1 Error ini2,000 Simulations in 2 x 2 Table

Na
Test

20 40 60 80 100 120 140 160 180 200

a = .56 b=.24 c=.14 d=.06
T 67 98 117 107 117 80 125 93 101 100
T, 12 43 36 54 63 62 75 59 58 63
E 8 40 50 54 60 47 79 59 60 69
R 98 113 111 111 116 91 125 98 99 101

a=.42 b =.28 c=.18 d=.12
T 94 93 109 106 100 98 90 108 109 99
T. 21 30 55 59 55 58 57 75 75 70
E 27 32 60 62 60 58 58 77 75 70
R 85 97 100 100 98 90 86 106 109 98

a=.2 b=.2 c=.3 d=.3
T 102 105 92 106 120 96 94 102 100 87
T 33 42 39 61 65 57 63 74 65 61
E 40 42 39 62 66 57 64 75 66 61
R 99 102 88 99 112 93 94 100 102 83

a = .54 b =.36 c =.06 d=.04
T 54 84 86 91 98 100 114 93 90 100
T, 2 13 21 31 32 7 57 45 47 59
E 2 14 23 37 37 40 57 50 47 59
R 88 110 92 89 97 105 111 86 91 96

2 Sample size for the single multinomial distribution in the table.
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the discrepancy between R and the exact test E. Further-
more, they show that the conservativeness of the exact
test and its approximation 7. persist for what would
commonly be called large samples. In contrast T achieves
a closer approximation to R than T, or E for moderate
or large sample sizes. Even though T is overly conserva-
tive for small sample sizes, it is always substantially
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closer to R in its performance under H, than the other
competitors evaluated here.

[Received September 1973.7]
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Comment and a Suggestion

In commenting on an earlier version of this article I
suggested that Conover’s example could be employed
to advantage to demonstrate the propriety of using the
continuity correction. The reverse demonstration by
Conover related not to proper use but rather to misuse
of the continuity correction. A note explaining proper
use of the continuity correction for situations like the
one Conover brought up in his earlier version, I felt,
would be a useful contribution—such explanation I will
attempt, using one of the examples of his current version.

My thinking here is that in using the continuity
correction I should try to parallel the computations I
would make if I were estimating tail or class-interval
probabilities for a normal distribution with known mean
and variance. Use of continuity-corrected chi square
for a 2 X 2 table as displayed by Conover is equivalent
to considering the cell frequency @ to be normally
distributed with expectation nic1/N, variance ninacice/ N3,
but with grouping into class intervals with terminals
midway between the integers, e.g., a = 5 corresponds

to the interval 4.5-5.5. Thus if I wished to get the proba-

bility that a is at least as great as 5, I would get the tail
area to the right of 4.5 for the distribution N[E (a),

1. Certain Exact and Approximate Probabilities
as Given by Conover

T Approximate
(Uncorrected Exact probability

chi square) a probability based on T,
9.378 7 0.00270 0.00815
7.677 0 0.00894 0.01857
4.969 6 0.03950 0.06992
3.754 1 0.09480 0.12832
1.948 5 0.22578 . 0.32752
1.219 2 0.41242 0.49179
0.316 4 0.68893 0.88406
0.073 3 1.00000 1.00000
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Var (a) J—to get the probability that a is exactly 5, I need
only subtract from this the tail area to the right of 5:5.

For Conover’s Table 2 example with n; = 19, n, = 21,
c1=17, ¢ =33, N =401 obtain E(a) = 3.325, Var (a)
= 1.44014, 8.D. (@) = 1.20006. I can simplify the
mechanics of getting tail area differences by taking
advantage of the results Conover shows in his Table 1,
Part B-—this requires only that I interpret the T.
probabilities shown as two-tail probabilities. At the same
time the exact cumulative probabilities shown, which
Conover treats as ideally correct, can be converted into
exact individual term probabilities. Table 1 shows the
necessary quantities appearing in Conover’s Table 1,
Part B.

Exact and approximate individual term probabilities
can be derived from this as I next show in Table 2.

2. Exact Individual Term Probabilities and Their
Estimated Values Based on Continuity-
Corrected Chi Square

[

Exact probability Continuity-corrected estimate

0.00270
0.03950 — 0.00894 = 0.03056
0.22578 — 0.09480 = 0.13098
0.68893 — 0.41242 = 0.27651
1.00000 — 0.68893 = 0.31107
0.41242 - 0.22578 = 0.18664
0.09480 — 0.03950 = 0.05530
0.00894 — 0.00270 = 0.00624

0.00815/2 = 0.00408

(0.06992 — 0.00815)/2 = 0.03088
(0.32752 — 0.06992)/2 = 0.12880
(0.88406 — 0.32752)/2 = 0.27827

1 - (0.88406 + 0.49179)/2 = 0.31208
(0.49179 — 0.12832)/2 = 0.18174
(0.12832 - 0.01857)/2 = 0.05488
0.01857 /2 = 0.00928

o= NWHMOOON

The excellent agreement between exact individual
term probabilities and those based on the use of con-
tinuity-corrected chi square, except perhaps at the very
extremes, is apparent. Thus for one-sided significance
testing the use of continuity-corrected chi square should
give much the same results as Fisher’s exact test. The
same should be true for two-sided testing, but some
simple precautions must be taken to conduct such tests
properly. The exact one-sided probability for an outcome
of 6 or more is Prob (a = 6) + Prob (a = 7) = 0.03056
+ 0.00270 = 0.03326 while the continuity-corrected chi-
square estimate is 0.03088 + 0.00408 = 0.03496, reason-



