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Potentially life-threatening cardiac arrhythmias can be initiated with stimuli timed to occur during the “vulnerable
window (VW)”. We defined VW as the time interval between the “conditioning”™ and “test” stimuli following in sequence,
during which the test stimulus response propagates in only one direction. We show that the VW is a generic feature of
excitable media and describe the relationship between the properties of an excitable medium and the VW. We present
asymptotic results that reveal the sensitivity of the VW to both the propagation velocity of the conditioning wavefront and
the recovery process parameters. We also have identified a critical length of medium that must be excited in order to reveal
vulnerability. Analytical results are in agreement with numerical studies.

1. Introduction

Normally, cardiac tissue is quiescent and a
wavefront is formed only when a special
pacemaker cell “fires” and excites adjoining
cells. At a critical time following the passage of
this wavefront, cardiac tissue can be stimulated
again such that a self-maintained, reentrant
(spiral) wavefront of excitation is indicated.
Often this alteration in cardiac rhythm is life-
threatening, leading to ventricular fibrillation
and sudden cardiac death [1,2]. The range of
critical times is referred to as the “vulnerable
period” (VP). Recently Winfree [3] has referred
to vulnerability as a sort of “black hole” in the
phase-plane representation of the reaction-diffu-
sion equations that characterize an excitable
medium such as cardiac tissue. Theoretical [4,5]
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studies and in vitro experiments [6] have shown
the excitation wavefront associated with these
altered rhythms to be that of a spiral wave -
similar to that observed in other excitable
media. Although there are many published re-
ports of spiral waves and their evolution (quasi
steady-state behavior), there are almost no re-
sults about the initiating events and no analytical
studies of vulnerability as defined by experimen-
tal studies in cardiac tissue.

Recently, a large clinical trial of several antiar-
rhythmic drugs was terminated because the
treated group experienced a 3 fold increase in
the rate of sudden cardiac death compared with
a control, untreated, group [7], perhaps a reflec-
tion of increased cardiac vulnerability. We
studied the one-dimensional analog of the VP,
the vulnerable window (VW) and suggested that
drug alteration of medium excitability (by bloc-
kade of cellular membrane sodium channels) can
prolong the vulnerable window {8,9].

How are spiral waves initiated in an excitable
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medium and how is this related to vulnerability?
It is well known that one can initiate a spiral
wave by disrupting a continuous wavefront
[10,11]. A break in the wavefront can be created
by a collision between the wavefront and an
obstacle in its path [10]. Alternatively, wavefront
formation can be partially inhibited at the time
of its initiation, i.e. stimulation under certain
conditions will produce a discontinuous wave-
front. Such incomplete wavefront formation
results when excitability in the region of the
stimulation site is anisotropic [12]. In a homoge-
neous medium, for instance, anisotropic ex-
citability exists in the region of a stimulation site,
s2, when a conditioning wavefront, initiated by
stimulation at a different site (s1), passes over it
(fig. 1). This is often referred to as functional
anisotropy.

Wiener and Rosenblueth first proposed the
concept of functional anisotropy in studies of
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self-maintained circulation of a pulse around a
ring of homogeneous excitable medium [12]. The
medium at equilibrium initially exhibited uni-
form excitability. It was then disturbed by pas-
sage of a conditioning wavefront. A test stimulus
was applied at a location different from the
conditioning stimulation site and at a time when
formation and propagation of the test wavefront
was permitted in only one direction. The re-
sulting wavefront circulated continuously around
the loop.

Later analytical and numerical studies deter-
mined that there was a minimum ring length
(pulse duration X conduction velocity) that was
necessary for maintaining circulation [13,14]. In
2-D, these estimates approximated the dimen-
sions of the core of the spiral as revealed by
numerical simulations [15]. Analytical approxi-
mations of the 2-D spiral wave behaviour are
given in refs. [16,17].
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Fig. 1. One-dimensional model for exploring the vulnerable window. Shown is a 1-D cable of Fitzhugh-Nagumo excitable
medium. There are two stimulation sites: s1 is activated to initiate a conditioning wavefront that propagates from left to right, and
s2 is activated to test the excitability of the medium. For a typical study, the s2 electrode is activated after activation of the sl site,
in order to provide time for the conditioning wavefront to pass off the s2 site. Three classes of responses are possible. For short
s2 — s delays, the conditioning wavefront will not reach the s2 site so that bidirectional conduction of the test wavefront will be
observed. Similarly, for long s2 — sl delays, the effect of the conditioning wavefront on excitability near the s2 site will be
negligible so that bidirectional conduction of the test wavefront will occur. For intermediate s2 — s1 delays when the conditioning
wavefront is passing off the s2 site, the medium is inexcitable and propagation of the test wavefront will not be observed.
However, for slightly longer s2 — sl delays, the medium to the right of the s2 site will be inexcitable while the medium to the left
of the s2 will be excitable and a unidirectionally propagated test wave will be observed.
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In these studies, most investigators probed
wavefront propagation after a discontinuity had
already been established, often with the use of
obstacles. Except for the pioneering work of
Wiener and Rosenblueth [12], very little atten-
tion has been given to describing the conditions
under which unidirectional block of wave propa-
gation (formation of a discontinuous wavefront)
can be achieved in a homogeneous medium. The
initial analytical observations of Wiener and
Rosenblueth [12] in a one-dimensional medium
suggest that spiral-like patterns can be initiated
in a homogeneous medium. Later studies by
Gul’ko and Petrov [4] confirmed these early
hypotheses.

We use the term, excitable, to refer to media
where the state of a region, subjected to a single
suprathreshold perturbation, switches from an
“equilibrium” state to an “excited” state and
then slowly returns to the equilibrium state.
Under most conditions, the excited region forms
continuous wavefronts that propagate in all di-
rections in response to the diffusion process.
Vulnerability, on the other hand, refers to a
spatial distribution of excitability of the medium
such that the excitatory wavefront is incomplete-
ly formed and propagation fails in some direc-
tions.

One typical example of the vulnerability is
given in the work of Wiener and Rosenblueth
[12]. They studied the problem of initiating a
continuously circulating pulse in a one-dimen-
sional ring of an excitable medium, stimulating
the medium by two timed stimuli (“condition-
ing” and ‘test”) following in sequence. This
study showed that vulnerability is revealed only
when a wavefront successfully forms and prop-
agates in one direction but fails in another
direction and that only under this condition a
continuous pulse circulation in an excitable ring
is possible. The importance of such a condition

for the initiation of a continuous pulse circula-
tion has also been shown in refs. [18,19], where
the authors studied the initiation of reentry in
two coupled excitable fibers.

In accordance with the above we define vul-
nerability in terms of the medium state where
test stimulation, which follows the conditioning
stimulation and is applied to the region with
incomplete recovery, results in a response that is
propagated in some directions and fails to prop-
agate in other directions. We have limited the
distribution of excitability in the medium to that
generated by the passage of a conditioning
wavefront. This conditioning wavefront is used
to explore vulnerability in both cardiac tissue
studies [20] and in patients that exhibit heart
rhythm disturbances [21,22].

Vulnerability can be readily visualized (fig. 1).
A conditioning wavefront is initiated at the sl
site. As the conditioning wavefront passes over
the s2 stimulation site, the medium properties
change from fully excitable (in a rest state), to
absolutely refractory (during the time the pulse
travels over the s2 site) to relatively refractory
(as the medium recovers its excitability). There
is a critical point during the relative refractory
period of the conditioning wavefront where the
medium in the antegrade direction is unable to
support wavefront formation while the medium
in the retrograde direction can support wave-
front formation and propagation.

In cardiac tissue, wavefront propagation can
begin as the result of excitation of a few cells
suggesting that a few cell lengths may be com-
parable to the thickness of a developed wave-
front. As mentioned in ref. [23] human atrial and
ventricular cells are of the order 6-10 pm and
10-20 pm in diameter, respectively, and are
approximately of the same length which is of the
order 60-150 pm. Most mammalian cardiac tis-
sue studies show that propagation velocity is
0.5-1ms™", where the lower bound corresponds
to the atrium [24] and the upper bound corre-
sponds to the ventricle [25].

Wavefront formation time is approximately
the same as the time constant of an inward
excitation sodium current which is of the order
of 0.3ms [26]. For example, if 0.3 ms is the
approximate time required for wavefront forma-
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tion, then the approximate atrial and ventricular
wavefront thickness is of the order of 150 pm
and 300 wm, respectively, the length less than 3
cells for atrium and less than 5 cells for ventricle.
Consequently, we will adapt our analysis to
consider electrode lengths comparable to those
of myocardial cells.

To fix ideas, we will use stimulation protocols
often used in experiments to drive our analytical
considerations, i.e. stimulation protocols where
the state of the medium is shifted from a
homogeneous state to some time-dependent
nonhomogeneous state by the passage of a
conditioning wavefront. Our probe for vul-
nerability will be limited to test stimuli that are
delayed to occur at different times following the
passage of the conditioning wavefront. The size
of the test electrode range in size from a fraction
of the wavefront thickness to several wavefront
thicknesses.

We will define the vulnerable window (VW) as
the range of time delays between a conditioning
stimulus and a test stimulus where the test
stimulus response is propagated in only one
direction (retrograde propagation) (fig. 1). To
identify the VW under these conditions, we will
explore the formation and propagation of two
nonstationary waves which are produced by test
stimulation. These two nonstationary waves can
either successfully develop and propagate or one
or both may fail to develop and propagate,
depending on spatial pattern of medium ex-
citability. In this paper the analysis will be based
on a one-dimensional approximation of the Fitz-
hugh—Nagumo model.

2. Model
Our problem is motivated by one-dimensional

cable models of an excitable fibre. These models
are of the form

C, a¢/ot = I(Na) + I(K) + I(stim) + D ’Plax’,

where ¢ is the cellular membrane potential, C,,
is the membrane capacitance, I(x) are ionic and
stimulation membrane currents and D is the
diffusion coefficient. Each individual membrane
current I(x), is expressed as the product of a
conductance and a driving force, o, (¢ — ¢,).
Krinsky and coworkers [27] reduced the Hodg-
kin-Huxley equations to a variable description
for an excitable fibre (Fitzhugh—Nagumo-like
description) which is similar to the one men-
tioned above.

Antiarrhythmic drugs and antiseizure drugs
alter cellular excitability and have been shown to
reduce ionic conductances, o, [28-30]. More-
over, these drugs have been shown to simulta-
neously suppress spiral formation under some
conditions and amplify the likelihood of spiral
formation under other conditions [8,9,31]. For
this reason, it is interesting to explore the deter-
minants of the vulnerable window so that the
action of these drugs might be better under-
stood.

A two variable Fitzhugh—-Nagumo-like repre-
sentation of an excitable fibre with an inward
excitation current (I, = oy, f(¥)) and a slower
outward recovery current (I = V) is given by

u o’u
Cm_a—;:V— 0'Naf(u) +D ax?_ >
WV =(oxu+V)

EY R Tx ’

where oy,, ox are the maximum sodium and
potassium conductances, respectively, and 7, is a
time constant of a slow recovery process.

Let us consider this system in dimensionless
form:

ou  d'u

R aidiOF (1)
1%

Fri e(—yu—V). (2)

Here u(x,t) is a dimensionless membrane po-
tential, V(x, t) is a dimensionless slow recovery
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current. The scale of u is the maximum action
potential amplitude U, the scale of V is given by
on.U, and the scale of time is C_/oy,. The
character length scale L is given by (D/oy,)""?
and, as mentioned above, is of the order of
150-300 pm. The small parameter, £<1, is
equal to C,/(roy,) and y = o /oy,.

The system (1), (2) represents a standard
excitable reaction-diffusion process where the
function, f(u), exhibits a negative resistance
region. The nature of the solution is determined
by the intersection of the two nullclines (fig. 2).
Two important values of the recovery variable
will be used in our analyses: V, is the equilib-
rium value of the slow variable and is deter-
mined by the intersection of the nullclines; V_,,, is
the critical value of the recovery that separates
propagated responses from nonpropagated re-
sponses. The parameters, m,, m, and m,, are
the roots of f(u) relative to V=V, . The re-
sponses of both the fast variable, u, and the slow
variable, V, to stimulation are shown in fig. 3 for
a stable equilibrium at m,. Here we show both
the fast (1) and slow (V) variables in response to
both a conditioning stimulus and a test stimulus.

When the medium is at the equilibrium,
(u(x,t=0)=m,), and u(sl,t.,4) is transiently
changed by a sufficient amount (stimulation),
then a conditioning action potential is initiated
that propagates away from the point of stimula-
tion (s1). On a much slower time scale, V slowly
becomes more negative with respect to V,, and
inhibits the formation of the u wavefront. Test
stimulation at a point, s2, while V(s2,¢,..,) <V,
will not produce a response, and the medium is
said to be refractory. However, delaying test
stimulation such that V(s2,t.,)>V,,,, stimula-
tion can again produce a propagated response.

The success or failure of propagation at x = s2
depends on the value of V(s2,¢,,). We can
readily visualize the vulnerable window by ob-
serving the nature of a propagated wavefront
initiated as the point, S, moves from left to right
where S is the point where V(x, t) =V_;. When §

is to the left of s2, propagation fails in both
directions. When § is to the right of s2, propaga-
tion succeeds in both directions. However while
S travels across the s2 electrode, a wavefront can
propagate to the left but fails to propagate to the
right. If the electrode length is sufficiently large
that one can neglect the effects of wavefront
formation, the duration of the vulnerable win-
dow can be approximated by Lg/C where Ly is
the electrode length and C is the propagation
velocity of the conditioning wavefront [32].

3. Methods

We solved the system (1), (2) numerically by
using the implicit difference scheme with second-
order approximation on the space grid interval,
Ax, and first-order approximation on the time
grid interval, At. The accuracy of the numerical
results, u,,,, was assessed as max(i)||u, ,, —
u(x)|| =n Ax®> where u(x) is the exact solution.
With numerical experiments, we computed a
grid solution for space steps of Ax, Ax/2 and
Ax/4. We measured the maximum difference of
u; ,, for corresponding points on each grid. The
slope, m, of the max(y; ,,) as a function of Ax’
was 2.14.

To compare numerical and analytical results
relating to wavefront properties, it is necessary
to define the endpoints of a wavefront. Since the
precision of our numerical studies was bounded
by 1 Ax?, we used this quantity as a threshold for
defining the beginning and the end of a wave-
front. We defined the beginning of the wavefront
to occur when u(x, t) crossed the threshold, m, +
1 Ax®, and the end of the wavefront to occur
when u(x, r) crossed the threshold, m, —n Ax>.
The values of grid intervals used for all numeri-
cal experiments, Ax and Az, were 0.1 and 0.01,
respectively.

Vulnerability can readily be demonstrated with
numerical experiments by varying the s2 —sl
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Fig. 2. Null-clines of an excitable medium described by egs. (1) and (2). Panel (a) illustrates a piecewise approximation f(u) with
different slopes A,, the negative resistance region, A,, and A,. In panel (b) is shown the idealized f(u) with different A, and A, and
where A, = = for analytical convenience. Unless otherwise noted, our numerical results were obtained with A, =2, =2.0, y = 8.0.
With these values, V,, =64,V =49, m, = ~08, m,=0.05, m;=24, ¢= 0.006.

stimulus delay and observing the response to test
stimulation ‘(fig. 4). The transition between
decay of the test wavefront in both antegrade
and retrograde directions and unidirectional con-
duction is shown in figs. 4a,b. In these experi-
ments, x,, =s2 — sl delay was varied by moving
the site of the s2 stimulation. Note that a very
small change in the s2 site resulted in a sharp

transition between decaying conduction (a) and
unidirectional conduction (b). Similarly in panels
(c) and (d), one can see the transition between
unidirectional propagation of the test wavefront
and stable, bidirectional conduction.

We will explore vulnerability analytically by
characterizing the formation of a wavefront
under stationary (for the conditioning wave-
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Fig. 3. Detailed representation of a 1-D excitable cable that
illustrates the responses to conditioning and test stimulation.
First, the medium is stimulated at the left electrode, s1. The
resulting u wavefront, 1, is propagated to the right. The
recovery “front”, V, propagates to the same direction. There
is a critical value of the recovery variable, V_ . that de-

crit?

termines when the test stimulation results in either successful
or failed wavefront formation. As this critical point, S, passes
over the test electrode, s2, stimulation will result in a
wavefront propagated to the left but not to the right, e.g. a
unidirectionally propagated wavefront. The progression of
the test wavefront is illustrated shortly after stimulation
(t=7) and then at an later time, 7+ A, that shows the
asymmetric formation of the front and its propagation.

front) and nonstationary conditions (for the test
wavefront). From these results we will estimate
the boundaries of the vulnerable window that
mark transitions between bidirectional propaga-
tion and unidirectional propagation and between
unidirectional propagation and no propagation
and explore the relationship between the VW
and electrode length. Finally, we will estimate
the minimum electrode length necessary to re-
veal vulnerability and compare these results with
numerical studies.

4. Calculation of the wave propagation velocity
and the structure of the fronts

The system (1), (2) can be solved by the
singular perturbation method. Using this method
we divide the problem into two sub-problems:
the first is the fast process (egs. (3) and (4)) that
describes the formation and propagation of the

excitation wavefront; the second (egs. (5) and
(6)) describes the slow recovery process at loca-
tions remote from the wavefront (for detail see
review [33]):

SV )
V= constant , (4)
V=f@w), t=rtle, (5)
S s ®)

In order to determine the nature of u(x, t) for
a solitary pulse, we will first identify the velocity
of a solitary pulse. In a zero-order approxi-
mation of & (singular limit), the propagation
velocity, 0, of a solitary pulse coincides with the
velocity of a trigger wave (the “ignition” wave
without the recovery process [34]), C, which is a
function of the constant value of the slow vari-
able, V, as described by egs. (3) and (4). Adding
the first-order term reduces the velocity, a result
of introducing time dependent changes in the
recovery variable, V, so that [34]:

O =C(1-{e). (7

In the singular limit when £é=0, ® and C are
equal.

Following the strategy outlined in [35, 36] we
will find independent zero-order solutions for
egs. (3) and (4) (that describe wavefront forma-
tion with a fast time scale) and egs. (5) and (6)
which describe the much slower recovery pro-
cess. To obtain an analytical solution of (3)-(6)
we will utilize a piecewise approximation of f(u)
and will find the velocity C solving (3) and (4),
(5), (6) separately (fig. 2a).

Changing the variables in (3): é=x—Ct, ¢ =
du/d¢, we get

¢(—3—§+C>+V-f(u)=0. (8)

In order to find the velocity, C, of the trigger
wave and its dependence on the value of the
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recovery variable, V, it is necessary to find the
solution to (8) as a separatrix connecting the two
stable equilibrium points (m;,0) and (m;,0)
determined by the roots of f(u) relative to V=
V,q- It follows from fig. 2 that the solution, ¢,

can be approximated by two overlapping partial

solutions described by

e=bu—-—m,) ifm <u<u,,
e=by(my—u) fus<u<ms.

Decay of test wave unidirectional propagation

20 ¢
U Test Conditioning
wWave wave
10} ,
0.0 |
-1.0 ¢
20
1 Test stimulation
| osite (x,.179.3)
-3.0 . ; . ;
160 170 180 190 200
X
(a)
Test wave unidirectional propagation
20 ¢
Test Congditioning
u wave ) wave
:
10} ,
0.0
-1.0
20}
| Test simulation
i sf1e & ua178.5)
30 : : : '
160 170 180 190 200

X

(b}

Fig. 4. Numerically computed wavefronts near the boundaries of the vulnerable window (A, = A, =0.5, y = 8, &£ = 0.006). Panels
(a), (b) illustrate the transition between failed (a) conduction and unidirectional (b) propagation: (a) x,, =s2 —s1=179.3; (b)
x,, =s2—sl=178.5. Panels (c), (d) illustrate the transition between unidirectional (c) propagation and bidirectional (d)

propagation: (¢} x,,=s2—s1=168; (d) x,, =s2—sl=164.5.

®
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Decay of test wave bidirectional propagation

20 Tent
Whve
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-10 }
+ Test stimulation
86 (s, = 168)
-3.0 . . 1
140 160 180 200
(e) X
Test wave bidirectional propagation
20 ¢ Test
wave ! ggc;ikioning
10 |
0.0
1.0}
-2.0
! Test stimulstion
O (x »184.5)
-3.0 : . |
140 160 180 200
(d)
Fig. 4. (Cont’d).
The substitution of (9) in (8) yields o =W-m),
b, = —0.5C + (0.25C* + A,)""?, where ¢ is given by
b, =0.5C+(0.25C* + ;)% (10) dys
' (/f+(u-m2)”a;=—c—)\2/¢/, (11)

In the interval between u; and ug, there exists a
solution in the form [37]

with boundary conditions
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PY(u;) = by (uy —m;)/(u; —my),
(us) =bs(ms —us)/(us —m,) . (12)

The solution of (11) with boundary conditions
(12) yields an expression for the trigger wave
velocity, C,

Uy =M, _ (51 "Pl)A(El '"pz)B

Us —my b_B—pl Es“Pz

(13)

where

_ A
A=—L p-—a, B =-b
P17 P2
o
by=b

2
3/\3’

p,=—0.5C — (0.25C*—1,)'"*.

p,=-0.5C+(0.25C* —1,)'"?,

In general it is difficult to solve (13) ana-
lytically except for certain simple functional
forms of f(u). As in ref. [38] we will consider the
case when A, is equal to infinity, but in contrast
to [38], we will obtain a solution when A, is not
necessary equal to A, (fig. 2b).

When A, is infinite, the solution of (13) yields
a wavefront velocity, C, described by

C=+(A A’/ (@(1+a)(A, +A5a))?,
a = (m;—my)/(m, —m;). (14)

Note that when a = (A,/A;)"?, the wave prop-
agation velocity, C, is equal to zero. The critical
value of the slow variable, V <V_,,, is defined by
conditions where C =0 and is given by

a— (A /A5)"?
Verie = Veqg — As(my —my) 1+ (/\3//\1)1/2 .

<

(15)

1t should be noted that the sign of this inequality
must be changed to its opposite if the sign of f(u)
is also changed [39].

For later considerations, we will need the
dependence of the slow variable on slow time ",
The solution of the slow system (egs. (5) and
(6)) is given by

-~

df(w)

f " ) (16)
Since we wish to explore the responses to test
pulse stimulation timed to occur in the wake of
the conditioning wavefront, it is necessary to
describe the behaviour of the slow variable, V,
after the back front of the conditioning wave has
been formed. The integration of (16) for a
piecewise linear function, f(u), when u,,; =
my = A3/Ay (my —my) and V(w,,,) = Ve, (fig. 2)
yields

v+ A ,
V= —ym, — Ay(m; — m,) exp| — X t ) .
(17)

Using (15) and (17) one can determine the time,
t..i1» during which V increases from V_; to V_,:

crit*

A a(l+ (/A
t o= 1 . 18
crit /\1 + ,), n a — (AI/A:),)”Z ( )

To determine the structure of the wave propa-
gation fronts, we solve eq. (9) with boundary
conditions given by the expressions u(—=)=m,
and u(e)=m,. The solution of this boundary
value problem is given by

u(¢)=m; + Kexp(b,¢),
u(¢)=m, — Kexp(—b;¢&), u>m,. (19)

u<m,,

In order to find K in eq. (19), we must match
both u(¢) and du/dé¢ at some intermediate point
& .. This matching procedure yields

Y b mamm
=% 45,5, KT G
b3 by/(by+b3) b3 ~bs/(by+b3)
6= (Z)" (k) B
bl ; bl

In accordance with refs. [40,41] the effective
front width, L, can be written as L, = (b, + b;)/
(b,b;). However, the value of L, depends on
how we define the endpoints of the wavefront,
i.e. what is the threshold of u, relative to m,; and
m,, that defines the boundaries of the wavefront,
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u{x). As mentioned above, this threshold can be
defined in terms of a small constant, M =7 Ax”,
such that the wavefront “starts” when u crosses
m; +M and “ends” when u crosses m;— M.
Thus the effective front width, L,, relative to the
threshold constant, M, is given by

b,+b
Ly = ln(M_’K)——lb—;-l-)-;-i : (21)

5. Nonstationary front formation process and
calculation of the boundary layer adjustment

Let us consider the process of forming the
front of a nonstationary solitary test pulse. The
formation of such a wavefront is dependent on
the nature of the stimulation amplitude, its
duration and the extent of the stimulation elec-
trode. Without limiting the generality of our
results, we will consider test stimulation with an
amplitude equal to the amplitude of a trigger
wave (m; —m,) and specified as an initial con-
dition. For numerical studies, the duration of the
stimulus is that of a single time step, Ar. We will
consider electrode lengths, Lg, which are greater
than the minimum length, L, required for
formation of a unidirectional response. The
evaluation of L is given below.

When one considers the zero order approxi-
mation (singular limit), the velocities of a trigger
wave and solitary pulse are equal to each other,
so that the slow and fast solutions for the leading
front of the pulse are matched at u=m,; (V=
Vea)-

With a first order approximation, the situation
is quite different. It follows from (7) that in a
first-order approximation of &, the propagation
velocity of a solitary pulse, O, is smaller than the
trigger wave velocity C because the recovery
process acts to retard development of the wave-
front. Since @ < C and both the solitary pulse
and trigger wave velocities are functions of the
slow variable, V, it follows that eq. (7) can be
written as O(V ) = C(V, )(1 — &,¢), where V, <

V., and C(V, ) is the trigger wave velocity
associated with the equilibrium value of the slow
variable, V.

Thus, while the solitary pulse front is forming,
the slow variable decreases by some value, 8, so
that V., =V, —38,. The reduction of the slow
variable in turn leads to a reduction (§,) of the
front amplitude which, in contrast to a trigger
wave, no longer coincides with (m;—m;). In
terms of singular perturbation theory, this means
that the slow (outer) and fast (inner) solutions
must be matched at u, =m;~§,and V, =V, -
oy, where 8, 8, are small corrections (of order,
g) and physically correspond to boundary layer
adjustments.

In order to match the fast and slow solutions,
we will use a procedure similar to that used for
analysis of boundary layers in fluid mechanics
[42]. After wavefront formation (during 7) and
the front departs from the stimulation site, there
is an interval of time during which u follows the
nullcline such that V= f(u). From eq. (3), we see
that the derivative terms are approximately
equal when V — f(u) = 0 so that du/ot = 9°u/ax>.
At the point of transition between the comple-
tion of the front and initiation of the recovery
process, we will replace these derivatives with
finite differences relative to the front formation
time in terms of the slow time scale, 7' = &7, and
the spatial extent of the front, x; — x,. Equating
these average values of the derivatives in (3), we
get the following condition:

Au,/(e7) = (Au (x;) — Au, (x,))/L?, (22)

where Au, and Au, are the finite time and space
increments of u respectively, x, and x, are the
front and back coordinates of the leading front
structure respectively; x, —x, = L is the dimen-
sionless diffusion length. The left side of eq. (22)
is equal to —§,. The first term in the right part is
equal to zero since du/dx at x = x, is negligible.
The second term Au,(x,) is equal to (m; —m,).
Noting that the dimensionless diffusion length is
equal to one, we get the following expression for
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Dependence of boundary layer adjustment on €
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Fig. 5. The dependence of the boundary layer adjustment,
8,, is linearly related to the relaxation parameter, «.

correspondence between the boundary layer
adjustment, §,, and the front formation time, 7:

8, =¢e(m;—m)r. (23)

If C=0(1) and ¢ is sufficiently small, then the
value of 7 can be estimated by L,/C where L,
and C are given by egs. (21) and (14), respec-
tively.

In order to check the approximation used to
develop eq. (23), we numerically explored the
relationship between ¢ and 8, (fig. 5). For e <
0.02, the analytical evaluation of 8, was found to
be in good agreement with the numerical solu-
tion of egs. (1) and (2).

6. Estimating the vulnerable window

First we will estimate the VW when the size of
a test electrode, Lg, is much greater than the
wavefront thickness, L, (eq. (21)). The behav-
iour of the VW under these conditions can be
described in terms of the singular limit (zero-
order approximation), since the wavefront thick-
ness, L,, is negligible. As mentioned above we
define the zero-order approximation of the VW,
VW as equal to time required for the critical

point, V_,, of the conditioning wave to pass
across the test electrode: VW'” =L /C [32].
Note that with this approximation, VW is
dependent on all medium parameters, A and v,
since they both influence the trigger wave ve-
locity, C.

But, as mentioned above, we should also
consider the case when the size of the test
electrode is of the same order as the thickness of
the wavefront given by (21). Under these con-
ditions, the dynamics of wavefront formation
may modulate the VW. Let us consider the
nonstationary test wavefront formation when
V(s2,t,.,) is near V,,,, a condition that occurs
when the medium has not returned to its equilib-
rium state after passage of a conditioning wave.
Here, the formation of the test wavefront is
paralleled by the recovery process associated
with the conditioning wave as it moves away
from test stimulation site. If the size of the test
electrode is comparable to the thickness of the
wavefront, it is necessary to analyze both of
these processes simultaneously, since both the
fast and slow processes influence the V(x) gra-
dient in the vicinity of V_,,. Furthermore, if the
test wavefront formation time, 7, is sufficiently
small, then these two processes can be repre-
sented by a linear approximation. From a phys-
ical perspective in this approximation, during
front formation we have competition between
two linear (in time) processes: an ‘“‘amplifying”
recovery process (the residual recovery from
passage of the conditioning wavefront) which
yields an increase (greater excitability) of the
slow variable by AV, and an ‘attenuating”
process associated with wavefront formation of
the test wavefront, during which the slow vari-
able decreases (less excitability) by a value AV_
equal to the boundary layer adjustment
8, (AV_ =6,).

If the resulting value of the attenuating
process, 8, associated with front formation is
greater than the increase of the slow variable due
to recovery, AV, , then a unidirectionally prop-
agated wavefront (incomplete formation of the
test wavefront) occurs in response to test stimu-
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lation. A unidirectional response occurs because
as the test wavefront forms, the inequality AV_ >
AV, remains valid, such that the slow variable on
at least one side of the test stimulation site is less
than V. and the wavefront developing on this
side of the test stimulus fails to propagate. The
result from the recovery process, AV, can be
approximated by the linear term in Taylor’s
expansion of V (eq. (17)) in the vicinity of ¢

(eq- (18)):
AV, = ¢, AY

crit

A ;
& :/Tf(ms —my)(y +Ay)

a — (A /A5)"2
a(l+ (A /A7)

(24)

Here At is an increment of the slow time in the
vicinity of z_,.. The resulting value of the at-
tenuating process, 8, can also be found by linear
approximation. In this approximation the deriva-
tive, aV/at(t..;,), is equal to a constant for time in
the vicinity of ¢_,,. Equation (6) in this case
yields the relationship between §, and §,:6, =
¥S,, where 8, is given by eq. (23).

Let us consider the balance of the attenuating
and amplifying processes in detail (fig. 6). As
mentioned above, we have placed the test stimu-
lation in the region where the medium is not
fully recovered. In other words, the test stimulus
is imposed in a region with a gradient of the slow
variable. After stimulation, part of the test
impulse will form in the region to the left of
point S, where V(x <S§,1>1,,,)>V,_,, while the
other part will form to the right of S, where
Vx>S,1>t,,) <V, (figs. 6a,b). Depending
on time delay, T, between the moment of test
stimulation, ¢, relative to the moment 7 of
passage of the critical point, S, over the midpoint
of the electrode, one can produce no response,
unidirectional conduction of the test wave
(delay = T,) or bidirectional conduction (delay =
T,). The time, ¢, in both cases is equal to
t,— T, and ¢t + T,, respectively.

When Lg<2L_,, we hypothesize that both
delays, T, and T,, are less than L_, /C (fig. 6),

where L can be determined from (20), (21)
and (10) where C is given by (14):

/\11/2_{_/\;/2

()\1)‘3)1/2 ’
K. = ms; —m, [ _ (o — ()\1/)‘3)”2)()‘1 - ’\3)]

! G ML+ a)(1+ (A A)H T
(25)

Lcrit = ln[juwl‘[<1]

We will also hypothesize that the mutual
interaction of the test and conditioning waves is
significant only while the critical point, S, of the
conditioning wave moves a distance less than the
thickness of a fully developed test impulse,
2L, after the moment of the test stimulation
(fig. 6). Therefore, a slow time increment Az in
(24) is equal to (2L, /C). With these consid-
erations, we can formulate the conditions for
determination of boundaries of the vulnerable
window as defined by the delays, T, and T,.

For the boundary between failed propagation
and unidirectional conduction consider the
events shown in fig. 6a. The boundary separating
failed propagation from unidirectional propaga-
tion occurs for the time of test stimulation, ¢, —
T, where V(P,t,, — T,)>V_, at the left bound-
ary of a potentially fully developed test impulse
(e.g. where u(x,r) crosses the threshold, m, +
M) decreases to the critical level, V,,,, during a
fast time 2L, /C which is necessary for point S
to move a distance 2L, from the initial location
at the moment of the test stimulation. In terms
of a fast time, the equation of the balance of
amplifying and attenuating processes is the fol-
lowing: PU + PQ — PD =0 (fig. 6a). Here PU =
AV,, PD = AV_ and PQ are given by:

21:‘crit Ls
av, = (“7:““?)51 ’
Lcrit Ls
Po- (T T-gg)e.
Lcrit Ls
AV_ =vy(m, — ml)<~—-—c +T, —-——C> . (26)

Factor &, is given by (24). Here the duration




334

J. Starobin et al. | Vulnerability in one-dimensional excitable media

~N
~
U
h A (@)
~
C ~
~
~
~
Vv, ~
VO av, ~
~
~
~
~
P ~
~
; T
N Vi Q aZ
..-.\-vc-n-. ---------- vessv e Nhprresccrvrrane sevevsrsnenne -5 S YO
~ h
N \
~ '
~ !
> ~ av. H \
~ D ! }\
e S A L Bl
~ :
N ~ :
. ! :
E ! "!: CTI Eo-—
+ - LCI’“ —.E E
: . : '
: - T e H
~
~N
~
~N
.-
AN
\
'
H
:
\
.
H
\
\
\
\

i

Leric

- CTz :4—

Fig. 6. Role of the propagating front, V(x), when the point, S, representing the critical recovery value necessary for successful
wavefront formation, V. ,,, passes across the region of the electrode. Shown is the test electrode (length = L) and the fronts that
are being formed at the left and right boundaries. The recovery parameter is shown as a linear approximation. The development
of the front during the propagation of S is dependent on the balance of the attenuating, AV_, and the amplifying, AV, , effects.

of attenuating process is determined by the formation. The time during which the condition-
fraction of 2L_,/C (L.;,/C+T,;) when the ing wave travels a distance equal to the length of

point, S, crosses the region of test impulse the electrode has not been taken into considera-
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tion in the balance equation, because we consid-
ered the stimulation field as constant in the
vicinity of the electrode.

Transforming the above equations, we get the
expression for T:

Tl 1 [(3Lcrit 3LS)§ _ Lcrit _{__I:__S_:' ,

T1+el\ ¢ T 2C c " C
(y+A) Aya— (’\1/)‘3)1/2
= 'y 173 - (27)
y(1+a) Ay 1+ (A1)
For the boundary between unidirect-

ional and bidirectional conduction, consider the
events shown in fig. 6b. The boundary separating
unidirectional propagation from the bidirectional
one occurs at the time of the test stimulation,
t,+T,, where V(P,t, +T,)<V_, at the right
boundary of a potentially fully developed test
impulse increases to the critical level, Vg,
during the time 2L, /C. The balance of amplify-
ing and attenuating processes is the following:
PU - PQ—-PD =0 (fig. 6b). The value AV, is
the same as above. The expressions of AV_ and
PQ are given by:

Lcrit Ls
Po= Szt 124,

Lcrit Ls
AV_ =y(m, — ml)(“‘g*‘ T, —“5) :

Here the duration of the attenuating process is
determined by the fraction of 2L _,,/C (L_;,/C —
T,) when the point, S, crosses the region of the
test impulse formation. Transforming these
equations, we get the expression for T,:

_ 1 [ <Lcrit Ls ) Lcrit _l_‘_s_}
L=1v¢l7¢\"c "2¢c/*7¢ "<l

(28)

Combining (27) and (28) and adding the time,
Lg/C, required for S to cross the length of the
electrode, we get the piece-wise expression for
the vulnerable window:

vwWP=r,/C, Lg>2L,,,

1 L, 2% )
VW= c( +L ,

1T+¢ " Feit14¢
LD <LS<2Lcrit ’
VW=0, L¢<Ly. (29)

The dependence of the VW on L is shown in
fig. 7, illustrating the departure for small elec-
trode sizes from linearity as defined by the
singular limit slope. The VW is zero for electrode
lengths less than a critical length, L, which was
determined numerically and is equal to 0.22L
in the particular case where A, =A, =2, g=
0.006 and y =8 (as mentioned above the am-
plitude of the stimulus is equal to m; — m,). For
lengths, L, <Lg<2L_,,, the VW is proportional
to the front formation time of the test impulse.
For longer electrodes where Ly > 2L, the VW
asymptotically approaches to VWO = Lg/C.
Moreover, eq. (29) illustrates the generic nature
of vulnerability and shows the dependence of the
VW on all medium parameters.

Numerical experiments (fig. 7) revealed good
agreement with the analytical solution (eq. (29)).
The numerical estimates of the VW were de-
termined by using a binary search of candidate
delays between conditioning and test stimula-
tion. The delay was implemented by moving the
test stimulation site.

We also explored the sensitivity of the VW to
the medium parameters. For A, =A; =2, =
0.006 the difference between numerical and
analytical dependencies of the VW on the slow
conductance, vy, was less than 5% if V_, was
sufficiently different from V, (fig. 8). The same
behaviour can be seen for the dependence of the
VW on the fast conductance (fig. 9). In this case,
the slopes, A, and A, are equal to each other.
The dependence of VW on v, A, A, for different
slopes is shown in fig. 10 (A, =2). As mentioned
above there is a significant difference between
the numerical and analytical results only when
Vi 1s sufficiently close to V1 B = (V,, — V;)/

crit

Veq <0.1 (figs. 8, 9).
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Dependence of VW on the length of the electrode
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Fig. 7. The dependence of the duration of the vulnerable window on the length of the electrode. Shown in units relative to the
front thickness, L., are numerically and analytically determined values of the VW for electrode lengths ranging from less than
the minimal length necessary for unidirectional propagation (L) to lengths comparable to several front lengths (7L.,;,). For
lengths greater than 2L, the singular limit approximation is adequate to describe the dependence of the VW on medium
parameters. There is a sharp transition at Ly= L, that reflects the minimal requirements for unidirectional propagation
(ignition). For electrode lengths less than 2L, the VW duration is greater than that associated with the singular limit, Lg/C, and

is described by the boundary layer correction.
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Dependence of VW on fast conductance
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Vi
3.8 4.4 5.1 5.8

g lisoidisaadiggitigiiligg

[} ~Q7.8 2.4 3.1

Fig. 10. Dependence of vulnerable window on slow conduct-
ance y and fast conductance A, for A, =2.

The derivation of eq. (29), based on a linear
superposition of recovery and test wavefront
formation processes, appears valid over a wide
range of B. If B < 0.1, the test wavefront forma-
tion time, 7, is large enough so that it is no
longer comparable to the fast time scale. This
means that in this range of B, the separation of

the system (1), (2) into slow and fast systems is
not valid [43]. In order to describe the behaviour
of the VW when B <0.1, we used numerical
methods (figs. 4a,b).

7. Estimation of the lower bound of electrode
length where VW =0: L

The critical electrode length that supports a
non-zero VW is potentially interesting. Specifi-
cally, if this electrode length is sensitive to
medium properties, it may suggest a means for
improving the stability of an excitable medium
with respect to vulnerability. The transition point
where the VW switches from a zero value to a
nonzero value is determined by the critical
electrode length, L, necessary for initiating a
unidirectionally propagated wavefront. The criti-
cal length L, is a function of the recovery
variable in the vicinity of the electrode, i.e.
Ly, = L,(V). The greater the value of V(x_, t,...)
that the midpoint of the electrode at x=x
“sees”, the smaller the length of L.

We must find the appropriate time delay T for
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test stimulus to diminish L, while maintaining
unidirectional conduction. For example, while
we may be able to successfully excite the
medium with length L(V,,), it may be possible
to find a smaller critical length that permits
successful unidirectional excitation by simply
changing the time of the test stimulation
V(Xp» tiese T T)>V,,. What is the maximum
value of T? This is determined by the VW
boundary separating unidirectional and bidirec-
tional propagation.

Let us consider test stimulation at t=1t_
which initiates unidirectional conduction. Let
to =1, + T, where as mentioned above, 7, is
the time when § passes the midpoint of the
electrode (fig. 6). Let T =T, (fig. 6b) which is
the transition point between unidirectional and
bidirectional propagation. This is the maximum
time delay associated with the minimum critical
length, Lp(Vy,), where Vp = Vix,,t,+T5,).
Unidirectional propagation will fail if the time
delay is less than T, since V(x,, t;, + T, —8) <
Vr,,8>0, and only bidirectional conduction will
be observed for 8 <0.

We estimate this value of L, by balancing the
“charge” available in the electrode region with
the flow of charge into the fronts and the amount
of charge that must be “replaced” due to the
incomplete recovery process. This approach has
been developed in ref. [44], where the authors
estimated the conditions for ignition of a flame
associated with a departure from near equilib-
rium conditions. In order to initiate unidirection-
al conduction at the VW boundary when T'=T,,
the amount of charge, (m;—m,)Ly At, pro-
duced by a test stimulus during the time interval,
At, must be equal to the sum of the charge flow
into the wavefronts of a fully developed test
impulse (as approximated by the gradient over
the distance, L.,,,), 2(m; —m,) At/L_;,, and the
amount of charge that must be replaced due to
incomplete recovery, (V., — V. )CT, At. Equat-
ing these values, we find that:

2(m; —m,)

12 At

(my—m,)Lp At=

crit

+ (V. = V., )CT, At.
eq crit 2

Transforming this balance equation, we find

Loy YeaT Ve 30
D—Lcrit m3—m1 z ( )

Replacing T, with eq. (28), yields

2 Ve - Vcri 1-
LD = ( + . t g Lcrit)

Lcrit m3’m1 1+§
Vg~ Verr 2—-¢& 71
eq crit
x(1+ my—m, '2(1+§)) ’ (1)

For our computations, V,, —V,;, =1.5 and m; —
m,=3.6 and L_, =6.25. From eq. (31), the
estimate of L, =1.38 so that the ratio: L,/
L., = 0.22, which coincides with the numerically
determined value shown in fig. 7.

In this particular numeric example L, relates
to more than one and less than five actual cell
lengths for the atrium, and more than two and
less than seven actual cell iengths for the ven-
tricle.

Note that eq. (31), can be written in a slightly
more general form by replacing V; with
V(x,, tes) and L, by the wavefront thickness
associated with V(x,t..). For instance, if
V(& » test) = Veq» then Ly, =2/L,, the minimum
length that must be excited in order to achieve
any propagation. In this case L relates to one

actual cell length for both atrium and ventricle.

crit

8. Discussion

Why is vulnerability in an excitable medium
interesting? A variety of different classes of
spiral wavefronts have been observed in excit-
able media — most notably, the BZ medium [45—
48]. These wavefronts have been the source of
great fascination because a supposedly homoge-
neous medium can reveal highly organized pat-
terns, e.g. a continuously recycling spiral
wavefront — that exhibits a degree of organiza-
tion that at first glance seems hard to accept.
This apparently organized activity lacks any
source of central coordination and reflects the
simplest coupling of elemental reaction processes
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by spatial diffusion. While spiral patterns appear
to serve no apparent function in BZ, their
appearance in cardiac tissue [5,6] and as waves
of calcium concentration within a cell [49] may
serve some important signaling functions. While
it has been long recognized that spiral waves can
be initiated by disturbing the medium, the con-
ditions of the disturbance have never been criti-
cally explored. Because of the emerging impor-
tance of spiral wave initiation, particularly in
cardiac tissue, we feel it is important to explore
the initiating events that can eventually lead to
spiral wave formation.

Control of spiral initiation, maintenance and
termination may be important processes to un-
derstand. Although speculative, it is interesting
to consider the results of a recently terminated
clinical trial, CAST [7]. Several drugs were
tested as to their ability to prevent potentially
life-threatening cardiac rhythms (tachycardia and
ventricular fibrillation) in a large number of
subjects that had recently survived a heart attack
(possibly a transient or permanent block of a
coronary artery, leading to damaged cardiac
tissue). The underlying model and hypothesis
can be briefly summarized as follows.

Following a heart attack, cardiac tissue may be
damaged rendering the heart subject to rhythm
disturbances. One potential hypothesis was that
damaged tissue may occasionally initiate a local
excitation that spreads to the rest of the heart.
As has been shown by many investigators and as
we have discussed above, the timing of this
“extra” stimulus could produce a discontinuous
wavefront such that the resultant wavefront
recirculates for long periods of time. Normally,
continuous wavefronts originating at a stimula-
tion source travel away from the stimulation site
and eventually collide in a remote region of the
heart. With reentrant excitation (spiral waves),
the heart rate becomes that of the spiral rotation
period and if this is quite rapid, the pumping
action of the heart can be compromised with the
possibility of fainting or sudden cardiac death.

Drugs that block the cardiac sodium channel
act in a manner that prolongs the refractory

period —the time when cardiac cells do not
respond to stimulation. Consequently these
drugs are often recommended for patients in
order to suppress ‘‘extra” stimulation pulses
originating in injured tissue. An implied hypoth-
esis of the CAST study was that extra stimuli in
the presence of drug are no more malignant than
extra stimuli in the absence of drug. Although
drug dosage was adjusted to achieve >80%
suppression of extra stimuli, the results of the
study argue against this hypothesis.

Sodium channel blockade is equivalent to
reducing the amplitude of the function, f(u),
which reduces the trigger wave velocity (eq.
(14)). Thus while these drugs can indeed reduce
the incidence of extra stimuli (by reducing ex-
citability and hence increasing the refractory
period), they, in parallel, increased the vulner-
able window (figs. 8-10) by slowing the propaga-
tion velocity. Similar behavior was described in
our earlier numerical and experimental studies
[8,9,31]. The surprise from the CAST results was
that two of the three treated groups experienced
a significant increase (3x) in the rate of sudden
cardiac death (supposedly from life-threatening
arrhythmias) when compared with the untreated
group. The CAST results, however, are con-
sistent with the mechanism of vulnerability illus-
trated in our studies. The parallels between the
CAST results and our theoretical results indicate
the possibility of linking molecular (e.g. bloc-
kade of sodium and potassium channels in car-
diac cell membrane) with macroscopic events
(e.g. initiation of potentially life-threatening dis-
turbances in cardiac rhythm).

Our results suggest that for large electrodes,
the VW can be approximated by the length of
time required for V_, to propagate across an
electrode of length Ly. However, for stimulation
electrodes of the order of the wavefront thick-
ness, the sensitivity of the VW to L is reduced
as shown by the boundary layer corrections.
Here, we found that the singular limit approxi-
mation, VW®, may underestimate the correct
VW by a factor or 2 or 3 when the source of
stimulation is less than that of the front thick-
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ness. For electrodes associated with devices such
as pacemakers and defibrillators, these differ-
ences can be ignored, but for stimulation from
aberrant cells, these differences may be impor-
tant.

An unexpected result from our analysis was
the nature of the minimum excited length neces-
sary to display vulnerability. For the Fitzhugh—
Nagumo parameters we used, this value was a
fraction of the front thickness when V=1V and
comparable in size to a few cardiac cells. The
critical length is dependent on all medium prop-
erties and thus it may be possible to design
physiologic interventions that reduce vulnerabili-
ty by increasing this critical mass.

In summary, we have shown that the vulner-
able window is a generic property of Fitzhugh—
Nagumo-like excitable media and depends on
basic medium parameters. To explore the VW,
we developed a method for solving linearized
Fitzhugh-Nagumo-like equations during wave-
front formation under nonstationary conditions.
With these results, we computed a correction to
the singular limit estimate of the VW that re-
vealed interesting properties for small elec-
trodes. These results may be useful in designing
interventions for control of spiral wave initiation,
particularly with respect to anticipating drug
effects on cardiac rhythms.
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