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Bistable Transmission Lines

J. NAGUMO, memper, mmee, S0 YOSHIZAWA, mesmuer, 1EER, Anp S, ARIMOTO, meMmBER, 1888

Abstract—The paper introduces two types of active transmission
lines having two stable states of equilibrium. In these, a transition
from one state to the other is transmitted along the line and the
transition waveforms are shaped during transmission. The proper-
ties of the lines have been investigated theoretically, using com-
puters, and experimentally by using lumped constant elements and
tunnel diodes.

I. InTrODUCTION

T IS KNOWN that some active transmission lines

have the property of shaping signal waveforms during

their transmission. In other words, cach of these
transmission Jines has a specific waveform peculiar to that
line, and a signal waveform, transmitted along the line,
approaches the specific waveform asymptotically.

Manuseript received Augnst 5, 1964; revised February 8, 1963,
The authors are with the Dept. of Mathematical Ingineering and
Instrumentation Physics, University of Tokyo, Tokyo, Japan,
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As an example of these active transmission lines,
Nagumo, et al. have deseribed an active pulse transmission
Iine with one stable equilibrium state (monostable line)
simulating a nerve axon [1]. In this paper we shall discuss
active transmission lines with two stable equilibrium
states (bistable lines). Tu these Hines, a Lransition from one
state to the other is transmitted along the line; we regard
this as a traveling signal.

We shall propose two types of bistable lines, beginning
with the simpler one, and diseuss their relationship,

L Brsvanee Ling (1)

AL The Cirewdl and ils Equation

We shall consider the cireuit in Tig. 1, where TD is a
tunnel diode with the characteristic curve shown in Fig. 2.
Sct the bias voltage I and the resistance R so that this
circuit acts us a bistable civeuit. In this case, the middle
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intersection in Fig. 2 js an unstable cquilibrium point
whereas the other two interscctions are both stable.
The equation of this cireuit is given by

. Ju
j=C :,; + g),

v = I
90 = 10 + 55
where I = f(v) represents the characteristic curve of the
tunnel diode (I'ig. 2). Hence, in general, the function g(v)
takes the form shown in Iig. 3.
Let g(u) be represented by a third-order polynomial:
g) = alp — )0 — v,)v — vy), (2)
where a > O and v, < v, < v,.

Consider the circuit shown in Tig. 4, which is con-
structed by caseading many of the two-terminal cireuits
in Iig. 1 through interstage coupling resistances,

Regarding the foregoing cireuit as a distvibuted line,
we find that
1 .021{

ras®’

®3)

where s is the distance along the line and » the interstage

coupling resistance per unit length of the line.
Introducing new variables:

'\/(”'

[ = Mo = o)

o, =y (g =y,
4( 2
v — v 200 — (v v,
=2t e 1 g = 2e = (0 + 1) (I>m> -1),
vy — 0, vy — 0,

)

we have, from (1), (2), (3), and (4), the following funda-
mental equation:

o*u

au
ax’

at

+ (w4 D — m)@u —1). (5)

Notice that one may assume without loss of generality
that

O0zm> —1,

since if 1 > m > 0in (4), replacing u by —u, it reduces
to the case where 0 =2 m > —1,

B. Propagation of Transilion

Squation (5) has three constant solutions: « = —1, 1,
and m. Of these, the first two correspond to the stable
equilibrium states, the latter to the unstable equilibrium
state.

Initially keeping the line in the stable equilibrium
state u —1, an appropriate input applied at one end
of the line will cause a transition of the state at that end

from u = —1 to the other stable equilibrium state u = 1.
Does the transition of the state fromu = —1to u = 1

travel along the line?
An answer to this question is given by solving the
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Fig. 1. Basic circuit of the simple bistable Jine,

F={(v)

0O

Fig. 2. Bias voltage B and resistance It were set so that the eireuit
i G 1 operfornes as a bistable cireuit.
g(V)
[§] /\v: /
v
/V. \/V:
Fig. 3. The function g(v) takes, in general, a form represented by a

third-order polynomial (2),
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Fig. 4. The simple histable Jine is constructed by cascading many
of the two-terminal circuits shown in Fig. 1, through interstage
coupling resistunces.

following boundary-value problem (Fig. 5).

w o= ulx, 1), xz =0, tz 0;

S?“zé . + (u 4+ Dl — m)u — 1), 0z m>—1;
dr al

on the line { = 0, u = —1;

on the line x = 0, w = F{{): given.

(6)
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Fig. 5. A schematic display of the boundary-value problem (6).
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problem (6) with bound

Some results of numerical computalion of boundary-value
ary condition (7). In these cases, tran-

z (¢) [#) = 8o

\/w/

sition waveforms are shaped during their transmission and ap- m
proach a definite waveform asymptotically. U y
-1 ~ !
v
m= —~0.4
X = 4.0 lo= 8.0
l /
x=2.0
Fq) =10
o T t ()
0 t
4 12 16 " L . .
Tig. 8. Schematic display of the phase portraits of (10) for various
x=05 values of the parameter 6.
I et

Fig. 7. The transition

disappears during transmission in ense

boundary condition (8) is used. This case is equivalent to one

gshown in Fig. 6 with m = 0.4.
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Some results of numerical calculation, using a digital
computer, are shown in I'ig. 6, where the valuem = —04
is chosen, and

[m) =

L -

Trom these results, it scems to indicate that the tran-
sition waveform is shaped during its transmission and
asymptotically approuches a definite waveform inherent
to this line.

Next, we shall consider the casc of the inverse transition.

Keeping the state of the line in the stable state u = 1
initially, an appropriate input applied at one end of the
line will cause a transition of the state at that end from
u=ltou= —1,

Some results of numerical computation are shown in
Fig. 7, where m = —0.4 as before, and
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= —1,

Trom this result, it secems that the transition disappears
during transmission, so that it does not approach a
definite waveform,

C. Inkerent Waveform

If the partial differential equation (5) has a waveform
as its solution, which is transmitted along the line without
suffering distortion and with a constant velocity (say 0),
then the solution must be a function of a single variable
n = { — x/6. In such a case, the substitution

z

'!/(7)) == u(-l', l), n = { —

reduces the partial differential equation to an ordinary
differential equation for y:

LOy gy -me =D =0 O
or
W,
dn ! (10)
% i+ DY~ M= D+,
where
0z m> —1.

Tor the time being, 6 remains an unknown constant.
In fact, its determination constitutes a part of the object
of the following procedure.

The system of (10) has three equilibrium points in the
phase plane (y-z planc), namely, (=1, 0), (1, 0), and
(m, 0). The former two arc saddle points (unstable) and
the latter is : ;

NAGUMO ET AL,
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an unstable nodal point if 0* = 4(1 — m?),

(1

an unstable focal point if 07 < 4(1 — m®),

The trajectory on the phase plane corresponding to the
inherent waveform is that which leaves one saddle point
and arrives at the other saddle point.

Some phase portraits are schematically shown in IMig. 8.
Fig. 8(a) is the case where |6] is less than a definite positive
value 0, (discussed later), Fig. 8(b) is the casc where
6] > 6,, and I'ig. 8(c) is the case where 1] = 6,. In case
6] is exactly cqual to 0o, o trajectory exists which leaves
saddle point (—1, 0) and arrives at saddle point (1, 0).
On the other hand, for all values of 8, there is no trajectory
leaving (1, 0) and arriving at (—1, 0). Moreover, there
is no trajectory leaving one of the two saddle points and
returning to the same saddle point. (See Appendix.)

These results correspond to the results of the numerical
computation of partial differential equation (5). Namely,
the existence of an inherent waveform corresponding to the
transition from u = —1 to © = 1 appears to mean that
the transition is transmitted along the line, and the non-
existence of the inherent waveform fromu = 1tou = —1
appears to mcan that the transition disappears during
transmission.

It is obvious from the final paragraph of Section II-A
that, if 1 > m > 0, only the inherent waveform which
corresponds to the transition from u = 110 u = -1
exists. Hence, only such a transition will be transmitted
along the line.

A. T". TTuxley [2] showed that one can obtain the solution
of (5), which corresponds to the inherent waveform, by
quadrature. We shall try to find the solution following
his method.

From (10),

dz _ (y + Ny = my — 1)] _
dy..e[1+ p 0>m>—1).
(12)
Assuming that
z = bu(l - y2); (13)

where b, is an unknown constant, and introducing (13)
into (12), we get

o= %0 (14)
lg, = —42m > 0,
and
by = —m > 0. (15)
This means that, if 0 = = 8, then (12) has the solution:
z = —m(l — ). (16)

Since m < 0, (16) corresponds to the trajectory which
leaves (—1, 0) and arrives at (1, 0).
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- If 6 of (14) is used in (11), the unstable equilibrium
point (m, 0) is a focal point if

lm| < 0.816, (17)

and otherwise a nodal point.
From (10) and (16), one has

dy - —m(l — ) (18) ’ R=5=5000 C=0.01ul
dn Tig. 9. The cireuit used in our experiments,
Setting the initial condition as
y=0 at =0,
one obtains
y(y) = —tanh (mn). (o
Thus the inherent wavelorm is found to be
. .
w(x, ) = tanh [*‘”l<t + "\7:")} (20) Iig. 10, The transition from the lower «lable state to the higher
2m travels along the line and its waveform ap yroaches a definite

. waveform nsym\)(m'\(:nHy. “The waveforms in the first, second, and
Tor a fixed x, u —? last - + @ anduy = —lasl— —=. third lines are those obworved at the finst, fifth and ninth stages
’ ) ’ 'S

M v i " " 3 53 : i “‘ i * \ e 3 1 r
It should be pointed out that when m = 0 (symmetric in the cirenit shown in g 9, respectively.
case), the inherent waveform does not exist.

D. Expervmenis

To verify the analysis, & Jumped constant cascading
circuit was constructed as shown in Fig. 9, in which the
bias voltage i was used to vary the value of m in (5).
Using this line, the following propertics regarding signal
fransmission were observed. y . - '

When the bias voltago Jf s choson so that n < 0, the i 11 e o, T B S R B rtond
transition from the stable state in the lower level to that in third, fourth, and fifth lines are those ohserved ab the }';rs!;‘,' sec-
the higher level travels along the line (Fig. 10); the inverse ?é:;;egt‘ilfrgl’y[.umm’ and fifth stages in the cireuit shown in Fig. Y,
transition does not (Fig. 11). In Fig. 10 the shaping of the
transition waveform is evident. 4 b

The transmission velocily inereases as the bias voltage T
increases, that is, as —m increases.

When the bias voltage IZ is chosen so that m > Q, we
have the inverse situation.

E. Remarks

It may be concluded from the results in Scetions 11-C
and II-D that, if point v, in Fig. 3 is located to the left

[ ————

(right) of the middle point of v, and vs, the transition from ~

; v,(vg) tO ve(vy) 18 transmitted along the line, but the Fig. 12, Bistable line (A) using tunnel divde pairs.
3 transition from va(v,) to v, (2a) is not transmitted. More-

X over, if v, 1s exactly at the middle point (symmetric case), .

% there is no transmission of the transition. l’

5 Conscquently, if we wish to transmit both transitions Y

et

ot

alternately, some circuit parameters must be changed
each time. For example, if we increase the bias vollage If,
only the transition from v, to v, can be transmitted along ™ C v
the line; while if we decrease 7, the inverse transition

becomes possible. In casc of a transmission line using & ~
tunnel diode pair {3], [4] (Fig. 12), we have to set I7, < Iy T
and 7, > . alternately in order to transmit each tran- L

[

mWx

g £ PR A b LA G

sition.
This inconvenicnee 1s avoided by adding a parallel

RN

Fig. 13, DBasic civenit of the bistable line (13) is obtained by adding

inductance L to the original circult, as shown in I'ig. 13 an inductance 1o to Lthe cireuit shown in Fig. 1.

o,
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[5], [6]. A transmission line with such a structure will be
discussed in Section 111,

111, BistanLe Line (B)

A bistable transmission line will be discussed in this
section, in which both transitions (from the lower state
to the higher and the inverse) can be transmitted along
the line.

A. The circuil and ils Equalion

We shall consider the cireuit in Iig. 14 using a tunnel
diode pair, where TD, and TD, are tunnel diodes with
the voltage-current characteristies [ = L) and I = f,(v),
respectively. It is obvious that this circuit is essentially
equivalent to that in Iig. 13.

The equation of this circuit is given by

dv

' ) . o1 .
[] == C;Z;+ I‘(U) +2, I (’1'; +[fl = U, (‘)1)
IC =C, + Cy FQ) = [iv + E) — [ — v).

If the bias voltages E, and E,, and resistance It arc
chosen properly [Fig. 15(a) and (b, the function
(22)

§0) = FO) 4 % = [0 + B) = [ = Ol +

takes the form shown in Iig. 16. Let g(v) be represented
by a third-order polynomial:

NAGUMO ET AL.
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where
Dy e (o
< e (U <Y B SIS R S
“J — Ui
()
o = wl‘———“—, (e > 0), 27
La (I-’ “’:;*-}-’*')
RSSO R .
RC

. .
vy =
Lu( 5 )

System (26) has three equilibrium points (—1, 0),
(m, 0), and (1, 0) in the phase plane (u-w plane). Of these,
(m, 0) is a saddle point (unstable) and the other two are,
respeetively,

stable nodal points if 3 4= 2m 4 e 2 VEr(1 £ m),

stable focal points if
\/§Z{(i“§§7;€5>3:h2m+e>o,
unstable equilibrium points if 3 =4 2m + ¢ <0,
where the upper signs are taken for (=1, 0) and the lower

signs for (1, 0). Since we are interested in a bistable lineg,
assume

3—24ml+e>0. (28)

Consider a bistable line, with the structure shown in

gl) = alv — ) — v)e = v4), (23) Iig. 17, which is constructed by cascading the many
where @ > 0 and o, < vz < vy cireuits <',>f l“'ig.. 1.41 .Un‘ou‘gh :mtcrstz\»ge coupling resistances.
. . . . By considering it is a distributed line, we have
In case j = 0, introducing new variables:
. 1 av
v o— R ] = TR, (29)
= Q et — ] = 9. rds
u — , { oo (24)
’ where r is the interstage coupling resistance per unit
we have, from (21), (22), (23), and (24), length of the line and s is the distance along the line.
Zu e S )(lu From (20) and (29) it Tollows that
¢ "5 ¢ — €} T a o
dt’ dt L a% R o’ , O
Tanar Torae T MG
+ (0 — D — m)u+1) =0, (25) T T
y Y )
or + (LFG) + RO) 57+ @ + REG).  (30)
‘!J’: = w, Using the exprossion of g(v) in (23) and the new variables
dw 1 v = \/,.;(';’;t,ff ﬂz)s W=t [ = I
— - {(31[" — 2mu + Quw (26) LA oy — v, ! Lm
di g
@1
— —_ )
+ (= D = m(u + 1)}’ we have the following fundamental equation:
i a*u K )
bﬂ(i—g{z pys il azt + (30— 2mu + € L()% 4+ (0 — D — M) + 1), (32)

where o > 0, ] < 1, and 3 — 2 |m| + ¢ >0.
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J
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L
Cl = !L TD; TD2 2: :=Cz v
E, E: R
i} |
______ L.
Q

Fig. 14, Basic circuit of the bistable line (B), where a tunnel diode
pair is used,

fo(E.—v)

()
i
R-! F(v)
|
'l Va, Vi v
v, !
|
E>E,;
(b)

Fig. 15. The bias voltages E1 and I, and the resistance B must
‘ée chosen so that g{v) in (22) has the form shown in Fig. 16

B. Propagation of Transition and Boundary-Value Problem

Partial differential equation (32) has three constant
solutions: u = —1, 1, and m. The first two correspond
to stable equilibrium states and the latter to the unstable
equilibrium state.

We shall consider the propagation of the transition
from one state to the other as in Scetion II-B. In this
case, we expect that both transitions (from u = —1 to
w=1gand fromu = 1tou = —1) are possible. This
expectation is proved by solving the following boundary-
value problem:

IREE TRANSACTIONS ON CIRCUTT THEORY

SEPTEMBER

g(v)

Fig. 16. 'The function g(v) takes, in general, a form which is repre-
sented by a third-order polynomial (23).
B -
Th¥ 'LCz h A h 4
AR T J " T .
T
L; ¥ g ¥ é/ + &
.::!.2‘ -
RE 3 3
=+
Fig. 17. The bistable linc is constructed by enscading many of the

two-terminal circuils shown in Fig. 14, through interstage coup-
ling resistances.

(v = ulx, 1), z =z 0, t = 0;
5" o° a*u , du

STas gt = 0 ga T BW — 2mu k9
) A4 (u— D — m)u + 1); )

>0, Iml <1, 3—2|m|l+e>0;

on the line { = 0, n 0, u = —I(or1);

at

Lon the linczx = 0, u = I'(l) : given,

Some results of numerical calculation, using a digital
computer, are shown in I'igs. 18 and 19. Here, u = —1
at £ = 0, and

F(l) = —cos (%é>, Lztz0,
’ (34)
=1, =N

When m = 0, —0.1, and —0.3,
transition were observed.

In case of the transition from u = 1 to u = ~1, similar
results were obtained when m = —0.1, as shown in
Iig. 20(a), while the transition from v = 1 to w = =1
disappeared when m = —0.3, as shown in Fig. 20(b).

transmissions of the

I'rom these computations, we may conclude that:




Fig. 18. Some results of numerical computation in o symmetric
case of boundary-value problem (33) with boundary condition
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u v =003 Y
x:],O» m=-0.1
e=-13
to==1.0 1

(a)

(34), where the transition waveform is shaped during transmission

and approaches a definite waveform asymptotically.

—1 A J

Fig. 19. Some results of numerical computation in an asymmetric

1)

2)

3)

(a) (b)
u y =003 Tig. 20. (a) Whenm = —0.1, the transition fromu = ltou = —1
x=3.0 me= - 03 1rz}vcls along the line similarly as that from v = —1ltou =1
e=-13 [Fig. 19(a)). (b) When m = ~0.3, the transition fromu = 1 to
o= 1.0 u —1 disappears. Note that the transition from w = —1 to

L]

u 1 can travel (Fig. 19001

(b)

case.

If the structure of the transmission line is almost
symmetrical, that is, jm| < m, (where my is a g Ql.b Some m.su\ts] of numerical computation of boundary-value
... Loy . oblem (43) with 1 ary conditi

positive constant), this line can transmit both problem (33) with soundary condition (36). In this case,

transitions (from w = —1tow = land fromu =1 . {‘W) =}l —cos5m), 042020,

tou = —1). = (), t> 04

As the degree of asymmetry of the transmission line

increases, that is, as |m| increases, only one transition

travels along that line. More precisely, it can be said form inherent to the line) during transmission, The
that, if m < —m,, the transition from —1 to 1 peculiar transition waveform travels the line without
travels along the line, while the transition from suffering distortion and at a constant velocity.
iog?ls. 1 does not. If m > mq the inverse situation Next, we shall consider the case where the line is

When the transition is transmitted along the line, triggered by a current source at one end. Then, at s =0,

the propagating waveform takes shape and ap- ) 55
proaches a peculiar transition waveform (& wave- s TONT)s (35)
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;’{;fhel'e o(r) is the triggering current, Thus, the last con-
" dition of boundary-value problem (33) is replaced by

on the linex = 0, 3’% = §({) : given, (36)

where
7 2 ? (L ) oy
®(1) = \[c; (va - v,) i 37)

Some results of numerical computation on houndary-
value problem (33) using (36), are shown in lig. 21,

C. Inherent Waveformn
Applying the same procedure as in Scetion II-C to (32),
one obtains the following ordinary differential equation:

&’ AE o dg
B e + B — o) i BE — 2m¢ + ¢ dr

—E-DE-—mE+1) =0 (8

where

u(x, t) = E(TI)) 7=t — ’ and B = 07’

SRR

LEquation (38) has three constant solutions, & = —1,
m, and 1, corresponding to three constant solutions
u = —1, m, and 1 of partial differential cquation (32),
respectively.

Now, if (38) has a solution such as £(3) — —1 as
n— —ow and £(y) — 1 as n — -+ o for some value of 6,
as shown in Fig. 22, then this solution corresponds to the
inherent waveform we are secking, and the transmission
velocity is determined from the value of 6.

At first, we shall consider the behavior of £(n) in sonie
neighborhoods of equilibrium points ¢ = 1. Near
solution ¢ = —1, (38) is approximated by a lincar differ-
ential equation

dy &y dy
B L‘{;"a + @ ") dve

(34 2m + ¢ dn

- 2(1 + m)y = 0, (39)

where v = ¢ + 1. The characteristic equation of (39):
H)\) =8\ 4+ B — o)\’
— B+ 2m+ g —2(1 4+ m) =0 (40)
has only one real positive root, since jl(+ ©) = 4o,
HO) = —2(1 +m) <0 and II'(0)
= —(3 4+ 2m + ¢ < 0.
Denoting this root by Mo(Ne > 0), I{(A) is factorized as

HQO) = (A — N)BN + v 4+ 2(1 + m)Ngh),

SEPTEMBER

for some 8

Fig. 22, 11 (38) has a solution such as &(y) — —1 as n — —® and
& n) — 1as 9 — -+, for some value of 0, this solution eorresponds
to the inherent waveform we are secking, and the transmission
velocity is determined from Lhe 0.

where
v= (oA DB =0 =201 + mN?+ G+ 2m + O

Since v > 0, it is apparent that both the other two roots
are cither real negative or complex conjugate with negative
real parts,

Near solution £ = 1, (38) is approximated by

Ty g LY dy
B e + B — ) i B —2m+ ¢ dn

— 2(1 — m)y = 0, 41)

where y = ¢ — 1.

13 By the same procedure as previously
mentioned, it 1s found that the characteristic equation
of (41) has one real positive root and either two real
negative roots or complex conjugate roots with negative
real parts.

I &(n) — —1as g — — o, as shown in Iig. 22, then
E(U) ~ =1+ AGM":

where 5 takes a large negative value and A is an arbitary
constant. Moreover,

En) ~ ANG™T,  E(n) ~ AN,

Thus, varying the value of 8, we seek the solution &(y)
such as £(n) — 1 as n — o« by numerical calculations for
the third-order differential equation (38), beginning with
the following initial conditions:

EO) = —1 4 4, £0) = \A,

£0) = N4, (42)

where 12> A > 0. Note that A, depends on 8.

Some results of numerical calculation are shown in
Fig. 23 for ¢ = 003, ¢ = —1.3, and for m = 0 and
m = —0.1, IFigure 24 shows the relation between the
transmission velocity 6 and the value of m, In Tig. 25
the relations between 6 and o are shown,

CJrom these results, we have the following conclusions
corresponding to those in Secetion 11I-1,

1) If Jm] is small, two solutions exist side by side, one
of which satisfies $(— =) = —1 and §(+ =) =




@ 0.0022139

i @0.0021878 7 =003
@ 0.0021905 m= 0.1
2 2 ¢=-13
' n
0.6

[4)]

Fig. 23. Inherent waveform obtained by numerical computation

for the third-order differential equation (38).

the other ¢{— o) = 1 and §(+w) = —1.
2) If |m| is large, there is only one solution. More
precisely, when m < —mg (nfis a positive constant),

only the solution which satisfies §(— =) = =1
and £(4 ) = 1 exists, while the solution which
satisfies £(—») = 1, and &(+ ) = —1 docs not.

When m > m), the inverse situation holds.

3) The numerically obtained waveforms of (32) [see,
for example, Tig. 19] approach asymptotically the
inherent waveform which is a solution of (38).

D. Experiments

We fabricated a lumped constant cascaded circuit
(ten stages of the bistable circuit) as shown in Iig. 20 to
simulate a distributed bistable line. Figure 27(h) shows
the form of the function

F) = Jo + E) — [T — ),

which is obtained from the v — I characteristic of the
tunnel diodes shown in Fig. 27(a). The curve @ in Iig.
27(b) is symmetric (F, = E,), and the curve @ is asym-
metric (F, < E,).
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The relation between the transmission velocity 6 and the
value of m,

Tig, 21,

100

m=s 0.1
e=—-1.3

10

1 L s
001 005 0.1 05

Tig. 26. The relutions between 0 and o.

Pigure 28 shows the waveform shaping process of this
circuit.

The transmission time of the transition along the line
is shown in Table L.

. Resulls of Olther Ilxperimenls

We shall deseribe the results of other experiments
using the civenit in Fig. 20,

1) When the two bias voltages I7, and E; are not cqual,
the characteristic curve of the tunmiel diode pair
is asynmumetrie, ns shown in Fig. 27(b). This makes the
transmission veloeitios for the two transitions (from
the lower state to the higher and from the higher
state to the lower) uncqual. IHence, the widths of
rectangular pulses change during transmission, as
shown in Irig. 20, This phenomenon might be utilized
for prolonging and compressing pulse width, for
example, in PWM,

2) Keeping the line initially at the stable equilibrium
state 1 = —1, we apply a step input at one end of
the line, fixing the other at w = —1. In this case,
transition travels to and fro along the line so that
free oscillation takes place, as shown by experiment,
in Irig. 30, or by computation, in Ifig. 31.
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L=4mH, R=3500, r=>5000

Fig. 26. The cirenit used in our experiments.

1(mA)

1.0}

1y

iy
n VV:; i i
ST o2 o3 oa 'V
ip = 0.98mA, v, =004V
i, =0.11mA. v, =028V
(a)
f(mA)
10}
05 /
i i \ i \f
o2 TooT (0T Jjo2 vav)

—0.5r

OO0 -0k

@ Ei=E,=180mV

@ : E,=150mV, E;=200mV

(b)

Fig. 27. (a)v — I characteristic enrve I = f(v) of the tunnel diode
used. (b) F(v) = flv + E,) — f(#; — v) is calculated from (a).
The curve (D is the case &y = FE: and the curve @ is the cuse
E, > E,

Tig. 28. The process of waveform shaping. The waveforing in the
first, second, third, and fourth lines are those observed at the input
terminal, the first, third, and tenth stages of the circuit in Fig. 206
with B, = E, = 220 mV, ¢ = 30 pf, respectively. Pulse height
in the first line is 70 mV, and those in the second, third, and fourth
are 45 mV, 40 mV, and 40 mV, respectively. Pulse width in the
bottom line is 180 usec.
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Tuw TransyissioNn Time or THE TRANSITION
Avonag mie laNg

-

Cluf)

Delay (usec) 0.004 0.01
E, = E, = I, 0.18 ' 48 86
(V) 0.2 21 70

L)

Fig. 29. The widths of the rectangular pulses change during trans-

mission if By and £, in Fig, 26 are not equal. (a) In case of By =
100 mV, E, = 200 mV, a wide pulse with 180 gsee width is nar-
rowed in th course of transmission. Pulse width in the bottom
line is 150 wsec. (1) Tn case of Ky = 220 mV, i, = 170 mV, a
narrow pulse with 180 wsee width is widened in the course of
transmission. Pulse width in the bottom line is 220 psee. In each
figure, the first waveform is that of input triggering; the second,
third, fourth, and the fifth waveforms are those observed at the
first, fourth, seventh, and the ninth stages, respectively. In both
cases, C = 0.01 pf.

Fig. 30. Free oscillation observed in the cireuit in Fig. 26 with

Ey = E, = 220 mV, ¢ = 0.0t ul. The waveforms in the first,
second, third, fourth, and fifth lines are those observed at the
sceond, fourth, sixth, eighth, and tenth stages, respectively, The
period of thig oscillution is 120 psec.

u

Fig. 31, Free oscillation obtained by numerical computation.

.
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APPENDIX

The following four statements mentioned in Section
11-C will be proved:

a) Torall values of 6 and m, suchas§ 0,0 >m > —1,

(10) has no trajectory leaving the saddle point (1, 0)

and arriving at the other saddle point (-1, 0).
b) Tor |6] > 6o, where 0y = — V2 m, the trajectory
of (10) which leaves the saddle point (=1, 0) to the

right crosses the line ¥ = 1 at a point above the
y axis, as shown in I'ig. 8(h).
¢) TFor |6] < 6,, where 6, = — V2 m, the trajectory of

(10) which leaves the saddle point (=1, 0) to the
right crosses the y axis at a point left of y = 1, as
shown in I'ig. 8(a).

If these three statements are proved, we have the
conclusion that, for 8 = 6,(00 = —4/2 m), (10) has a
trajectory leaving the saddle point (—1, 0) and arriving
at the other saddle point (1, 0) as shown in Iig. 8(c¢), and
that this is the only trajectory connecting the two saddle
points. This trajectory corresponds to Huxley's solution,

d) There is no trajectory which leaves one of the two
saddle points and returns to the same saddle point.

Proof of )

Consider a parabola:

aly® = 1) (43)

intheinterval 1 2 y 2 —1, wherc e is a positive constant,

We intend to choose the constant « in (43) so that along
all points of the parabola the ficld vector of (10) points
outward from the crescent-shaped arca in Iig. 32.

In this casc, the trajectory leaving the saddle point (1,0)
through the unstable downward branch never arrives at
the other saddle point (=1, 0). In fact, since the vector
of (10) always points to the left in the lower half plane
and the unstable trajectory leaving the saddle point
(—1, 0) to the left goes down to infinity, there is no
possibility of the trajectory which leaves (1, 0) arriving
at the saddle point (=1, 0) along cither of its stable
trajectories.

Now, on parabola (43), dz/dy in (12) is given by

LA 92(1 + = 79).
dy a

Z =

4nH

On the other hand, the tangent vector of the parabola is
given by .

gj = %y, 5)
Consequently, if
92(1 + 1{;32) > 2ay (46)

throughout the interval 1 2 y = -1, then the field
vector of (10) points outward from the cresent-shaped

area along all points of the parabola.
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Fig. 32, Along all points of the parabola, the field vector of (10)
points ontward from the crescent-shaped area, il (46) holds.

Since (46) is a linear inequality for y in the interval
12y = —1, (16) holds for all y in that interval if (46)

holds at y = 1 and y = —1, These conditions lead to
o 1 —m
{1 4 ——) > 2a,
¢ “7)

03<1 + :l,.:.l’l) > —2a,
| «

or
(20 — Ofa — 0°(1 — m) <0, (48)
28 + Fa — 0°(1 + m) > 0.
These incqualitics hold simultancously if
0+ Vo' + 80°(1 — m) > da
> — 6+ Vo -+ 86°(L +m).  ({9)

Since the left-hand side of (49) is greater than the right-
hand side for all values of 8 and m such as 6 £ 0, 0 >
m > —1, one can always choose an « which satisfies (49),
and statement a) is proved. '

Proof of b)

Consider again the parabola (43) with « negative.
The process of the proof is the same as that for a). Pro-
ceeding us before, we have

{Qag — fa — 0L — m)y >0,
2¢* + 0fa — O°(1 4+ m) <0,

(50)

instead of (18). These inequalities hold simultancously if

68 — VO -k 80°(1 — m) > Hda

> —6° — VT + 86°(1 + m), (51)

sinee a is negative.
In order to be able to chioose an « which satisfies B1),
it is necessary and suflicient that the difference d:

[left-hand side of (51)]
— [right-hand side of (51)]

d =

= 20° + V0 + 80°(L + m) — V8" + 86°(L — m)

be positive. This condition leads to

V(6 F 8 — 6am’ > 8 — 0% (52)



' .

N
d16] = 2\/?, (62) always holds. On the other hand,
if 16] < 242, we know that (52) holds so long as

(0] > —+/2m. (53)

Therefore, we come to the conclusion that, if (53) holds,
we can choose an « which satisflies (51). This proves
statemoent b).

Proof of ¢)

In this case, onc obtains

o2

instead of (46). (Sce Fig. 33.)
Proceeding as before, we obtain (48), and hence

) < 2ay, (54)

— 0"+ 86°(L + m) > da
> 60— Vo + 8601 — m),  (55)
since « is negative, The condition

d =

—26% 4+ Vo' 4 86°(L — m)

— A8 8L+ m) >0

leads to

(56)

8 — 6> V(0 + 8)" — G,
instead of (52). Since (H6) is satisfied if
o] < —v2m, (57)

statement ¢) is proved.

Proof of d)

Assuming that there exists a trajectory which leaves
one of the two saddle points and returns to the same
saddle point for 6 = 6, let the corresponding solution
of (9) be yi(n). Then
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(m,0)
(~1.0) (1.0)
Fig. 33, Along all points of the parabola, the fiekl vector of (10)

§><vints inward from the edge of the crescent-shaped arven, il (54)
lds,

Ldy _din

6° dn’ - dn = (h + Dy — m)y — 1) = 0. (58)

Multiplying both sides of (58) by dy,/dn and integrating

fromng = —w {on = o, we obtain
® (Iz/l)2 -
=] dy = 59
.[_m (dn “n 0, (59)
since dy,/dn = 0 at 97 = . Equation (69) leads to
diyy/dm = 0 for all 5, which contradicts our assumption,
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