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An Active Pulse Transmission Line
- Simulating Nerve Axon*
J. NAGUMOY, Masir, e, S. ARIMOTOt, axp S. YOSHIZAWAT

Symmary—T10 electronically simulate an animal nerve axon, the S 4 ’ - - ’
made an active pulse transmission line using tunnel diodes. I = Co—+ guan®h(V — Vo) + gxn*(V - Ve)

s equation of propagation for this line is the same as that for a “dt _ , . )

ified model of nerve membrane treated elsewhere. This line ) 5 (V — V

- . .. R ) ‘ + g L( L)’

ss the signal waveform during transmission, that is, there being

wpecific ulse-like waveform peculiar to this line, smaller signals dm ’ .
;’mpliﬁid, larger ones are attenuated, narrower ones are widened . “‘J }"f" {am(V)V'{’“ ﬁm(V) }m = am(V), R -
those which are wider are shrunk, all gpproaching the above~ : e - : (1)
tioned specific waveform. In addition, this line has a certain v - e
old value in respect to the signal height, and signals smaller -+ {ozh(V) -+ ﬁh(V)} ho= ay(V),

dh

the threshold or noise are eliminated in the course of transmis-~ dt
‘sioh. Because of the above-mentioned shaping action and the exist- dn
“of a threshold, this line makes possible highly reliable pulse —_
#ransmission, and will be useful for various kinds of information- dt
processing systems. : )

+ {anV) + 8.(V)}n = an(V),

; , , aen L mg
1. INTRODUCTION : an(V) = 0.1(V + 25) [exp (Ki:j) —_ 1:! ,
N THE CASE of conventional pulse transmission = o , : 10 ,

“lines, provided they are of great length, signals '

»-suffer attenuation and distortion as they travel - Ba(V) = dexp (_Z)

wn the line, whereas an electric pulse signal which e

ansmitted along an animal nerve axon suffers ‘

seither attenuation nor distortion, regardless of the ' vV

distance covered. A pulse transmission line with such ‘a"(V) = 0.07 exp (56)’ ‘

ualities will be useful for pulse transmission in com- T e

unication systems, data processing systems, electronic _ , vV 4 30 -1
mputers, etc. : ' S BV !:egcp( : ) ] ,
It is our purpose to realize such a pulse transmission N 10 .

ine by simulating the animal nerve axon.

i

0.61‘(1/ + 1(;? [eXP’ (Z_i“_fg) - 1}“‘ el ‘;
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II. Exdiﬁ&noN oF NERVE AXON - an(V) 10

A great deal of research on the electro-physiology of
the nerve axon has already been made,! the most im- A4
portant being that of Hodgkin and Huxley.? They have Bu(V) = 0.125 exp (éﬁ)’
made a quantitative study of the excitation of a nerve L e

@xon and the propagation of the excitation, and have

derived the Hodgkin-Huxley equations (H-H equations) Whe#e : SRRt Sy S ,
hich describe the phenomena. - o I=the membrane current density (ua/cm?) [in- -
0 the case of a “space clamp,” that is, in a case ~~ ward current positive], = I R T it
?;ere the excitation of a nerve axon is spacially uni- V=the membrane voltage (mV) [difference from
orm, the H-H equations describing the excitation of the resting potential, depolarization negative ], :
ferve axon are as follows (see Appendix): m=the sodium activation (dimensionless) [varying

between 0 and 1],
h=the sodium inactivation (dimensionless) [vary-

. ing between 0 and 1], : , ;
&)'o,e’;l)"zgoA%gg:i Physics, Faculty of Engineering, University of n=the potassium activation (dimensionless) [vary-
‘Reader§ unfamiliar with the electro-physiology of the nerve ing between 0 and 1], ‘ ‘
&m% may wish to refer to J. W. Mocre, “Electronic control of some {=time (msec) ‘
ve bioelectric membranes,” Proc. IRE, vol. 47, pp. 1869-1880; T . o
°’;emiierh 1(?(159. Cy=the membrane capacitance (uf/cm?),
S L. gkin and A. F. Huxley, “A quantitative description of B = 5o == 5o o= 2
i&fnbr'ar;e current and its application to conduction and excitation gna =120, gr=36, £,=0.3 (m¥/cm?),
P erve,” J. Physiol., vol. 117, pp. 500-544; August, 1952, Vo= —115, V=12, V= —10.5989 (mV).

i%; Received April 26, 1962; revised manuscript received July 9,




* use of analog computers?¢ and digital computers®~8 have

. appeared®in recent literature. Nevertheless, it is still
- difficult to make an electronic simulator of the H H’ :

’equatlons on account of thelr COmpIGXItleS Ce

Recently, Fi‘tz‘Hu“gh ingeniously Simpliﬁed ’theuH H

equations in case of a “space clamp,” making use of an
analog computer, and proposed the following BVP
model (Bonhoeffer-van der Pol model).®

<1 . du SRR A
J=———w—{u—-—),
s dl w3

e =4 bw = a — u,
.. dt . . :

(2)

where a, b and ¢ are constants satxsfymg the relations

<i>b>0 ﬁ>b

The varxables u, w  and J in the BVP model (2) cor-
respond to the pair of variables (V, m), the pair of vari-
_ables (4, n) and I in (1), respectively,

Fig. 1(a) shows the trajectories on the (u, 'w) plane

of the BVP model (2) in the case where J =0, while Fig.
- 1(b) shows the trajectories on the (u* 'w*) plane of (n
: m the case where I= =0. Here B :

;@‘ - @

Comparmg Flg l(a) to Fxg l(b) xt is observed that
_ there is faxrly good correspondence between the H-H
‘ "',equatlons and the BVP model. We shall therefore try
_to sxmulate‘(Z) mstead of (1)

IV AN ELECTRONIC SIMULATION OF THE BVP MODEL

Let us cons:der the two- terminal circuit of Fig. 2,
R where TDisa tunnel dlode 10 From erchhoﬁ"s Iaw :

’wGA

Houston, Texas; April, 1957.¢
1R, FxtzHugh “Thresholds and plateaus in the Hodgkin-Huxley
" nerve equations,” J. Gen. Physiol., vol. 43, pp. 867-896; May, 1960.
-8 K. S. Cole, H. A. Antosxewxcz, and P. Rabinowitz, “Automatic
computatlon of nerve excitation,” J. Soc Indust. Appl Matk vol. 3,
pPpP. 153—172 September, 1955. -
Automatlc computation of nerve excitation, correctnon
J Soc Indust. Appl.- Math., vol. 6, pp. 196-197; June, 1958.
#+%7 R. FitzHugh and H. A Antosnew:cz, “Automatic computatlon
of nerve excitation, detaxled corrections and additions,” J. Soc.
. Indust. Appl. Math., vol. 7, pp. 447-458; December, 1959,
. ¢ R. FitzHugh, Computatlon of xmgulse initiation and saltatory
_ condition in a myelinated nerve fiber,
11-21; January, 1962,

I R. FitzHugh, Impulses and physiological states in theoretical
models of nerve membrane, Biophysical J., vol. 1, pp. 445-466;
July, 1961,

¥ J. Nagumo, ef al., “An Active Line Using Esaki Diodes,” Inst.
Elec, Commun. Engrs. japan Professional Group on Nonlinear Cir-
cuit Theory, Rept.; February 7, 1961 (in Japanese).

nv StlgdthHS of the H H equations by the -

Fig. 1—The quahtatwe smnlanty of (a) and (b) suggests tha

1>a>1—b 3)

where f(e) is a function, as shown in Flg 3 whlch repr
sents the voltage vs current charactenstlc of the t
diode. For sxmplxmty, we assume

1 : .
ﬂa=a——h¢wue

- v and B Paxon, “Analog Sxmulatnon of Nerve Ex~ S
citation,”. presented at the 2nd Natxonal Sxmulatlon Conference, :

where
e
B «/'Ec‘.,’
N . p M'WW'
J =—19,
KJ

1t is seen that (5) is reduced to (2).

‘ constants a, b and c.

" Biophysical J., vol. 2, pp. -

The second condltxon c‘*’>b is equivalent to

wt

(0= Ve36m
lwr=05(n—h) . .

BVP model can be considered as belonging to the same cla
excitable systems as the Hodgkin-Huxley model (Reproduc
from FitzHugh,? courtesy of the author) - :

J= C?"i f(e),

L;+Ja=¥a;eeﬁ¢?‘

(e — en)
3K?

Next; we shall examine the (,OndlthHS ’n (3) for

S e

The ﬁrst condmon 1>b>0 is equw&lent to
p >R :

LS
R~
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Fig. 2—An electronic simulator of the BVP model. -

Sy s

4—When bias voltage Eo is set between e; and e, the cxrcuxt
shown in Fig. 2 is monostable Whereas, if Ey=e, the circuit
- oscillates spontaneously

he last condition: 1 >a> 1 ——%b’is équivalent to

of the tunnel diode. In particular, the condition in (8)
ns that the c1rcu1t ‘oscillates spontaneously if the
13s voltage is set at ¢ in Fig. 4. In fact, if Eo=e,, then
0, and in the case of 7=0, (2) becomes as follows:

Sl
T

=0. (11)

T ransmission Lme Szmulatmg Nerve Axon

° (1’0) ,

he condmons in (7) (8) and (10) 1mply that in the
€ase of the “current clamp,” j=0, the circuit shown in
ig. 2 is nothing but the well-known monostable circuit

2063 '

Smce c2>b 1>b>0 c>0 thls dxfferentlal equatlon
belongs to the Liénard type! which represents self-
oscillations.

. Therefore it is concluded that the BVP model can be
simulated by the monostable circuit shown in Fig. 2.

However, condition (10) which restricts the bias voltage

E, is too severe; since even 1f the bias voltage is set as

62 < Eo < 61,

in ng 4 the circuit in Fig. 2 remams monostable The'
condition in (12) is wrltten as :

z>a>1—'§b,_; o
and hence we shall employ ;che‘ conditions o
1>8>0, ¢¢>b, 2>a>1~—1%, (13

instead of (3), for the constants in the BVP model.

V. PROPAGATION OF Excrrél'rm\r

The equations which describe the propagation of the o

excitation along the nerve axon are easily obtained from
the equations of the “space clamp.”*? ,
Denoting the distance along the nerve axon by S (cm),

the radius of the nerve axon by R, (cm) and the specific e

resistance of the axoplasm by o (KQcm), we find that
Ry 8V '

T 2 0 e gy s
o o e

Consequently, takxng 1) into account the H- H; -
partlal differential equations describing the propagatlon e
of the excitation become as follows

‘ﬂ—~£’—° C 9}-7-% 3k(V V )
ast RO{ o e -
: + 'g};n‘a(v - VK) + g;(v ~ VL)} , |
—+ '{d%n,<V'> + 8N} = fé?'?if,(,}V’f)f} E
’5;‘ {a;,(V) + ﬂh(V)l = a,.(V), o
on
-t {an(V) + ﬁ,m}n = an(V)

Similarly, let us consider the circuit shown in Fig. 5(a)
or Fig. 5(b), which is constructed by cascading the
many two-terminal circuits of Fig. 2 through mterstage
couplmg re51stances e ~

1§, Lefschetz, “Differential Equations: Geometric Theory,” In-
terscience Publishers, New York, N. Y., pp. 249-254; 1957.
2 Hodgkin and Huxley, op. cit., p. 522.
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: corrésponrding to (14), provided the interstage coupling

~-resistance per unit length of the lme is 7. From (2) and

k ""(16) it follows that

w1 au'i ( ‘ u3> o
h—— = — o —w — [ — — ]},
Os? c. ot . 3
_dw ' R
c—+bw=a—u,

[

where b= p/r :
" The system of partial differential equatlons (17) is the
~ distributed BVP model which may be considered as a
simplified system of the H-H partlal differential
equatlons (15). ~
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Reqardmg he above circuit as a distributed line, we

an

. L %
cLTDF i
By Ep-- £

..............
-----------------

“(a)
LiE —
Y =¢c . ::\1
it W W
L
(b)

Fig. 5—A distributed active line is obtaned by cascadmg the't
terminal circuits in Fig. 2 through interstage coupling resistan
The crrcuxt shown in (b) is equwalent to that in (a)..

+E

......................

Fig. 6—Electronic model corresponding to (22).

(19) is transformed as follows:

9%z 9%z
'6t6x2 o9

3
+u(1—-—z+e )——~+z p>0 6>e>0

o By ehmmatmg w from (17), a single partral differen-
tral equatxon for % 18 obtamed as follows:

c By (92% s azu s ‘ S . ou
©ch b= =1 — — ) — 2 —
conooles® st ot AN 2

et o

For‘simplicity, let us 'con51der a case where
R O (b O) In such a case, (18) tal\es the form

= 63u : 6 u

du Lo
¢ =-——-~—cl—u —-—+u—-a,r 19
~9tds? a: ( , )6 ; ( )
~ where 4 ,
>0, 2>a>1, > 0. (20)

By setting
k s 2a

L=y 2= (e —u), p=cla®—1),

Vch a?—1

@1

It seems hkely that the partral dlfferentxal equa
(22) is one of the simplest mathematical models of
nerve axon. The structure of the electronic model A
corresponds to (22) is shown in Frg 6.

VI. A BOUNDARY-VALUE PROBLEM

We now proceed to - “investigate -the - folloy
boundary value problem for the pdrtral drffere
“equation (22) (Fig. 7). ‘

z = 3(x, t),x>0 t>0
632' 9%
8t8x2 a2

‘”>O’R>E>O’

. 3 © 0z
on the lines = 0, g = 0, -5—='0
V i

on the line x = 0, z = F(t) given.

3

Some results of the numerrcal calculatron using

digital computer are given below We chose 7
€=0.1 and ' : -

2 - 27wt o
F(O) = —2—9(1 —cos-lr—), 2120
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A. Signal Ampliﬁcatio'ﬁ' )

B. Signal Attenuation o T
The case of #,=1.0, 20=20.0 is shown in Fig. 9. In

this case the signal is attenuated in the course of

transmission._; S ' :

C. Signal Elimination

The case of £y=3.0, 20=3.0 is shown in Fig. 10. In
this case the signal is eliminated in the course of
. transmission. © oo v O e T T ey

From these results, it is expected that with respect to
a threshold value), R

1) a signal with a height between the asymptotic

value and the threshold value is amplified during -
transmission, " S

mission,;&_;:, B SR e
3) a signal lower than the threshold value is elimi-
nated during transmission (see Fig. 11).

tenuated to the asymptotic value during trans-

“to signal height. In order to clarify the situation, we

shall try to seek. for the asymptotic waveform - in
Section VIL. - .~ e :

- VII. AsymproTiCc WAVEFORM & -

- form, as its solution, which is transmitted along a line

T=t—x/6. In such a case the substitution
o) = a1, 7=1-—

Prdinary differential equation for §:

BE""‘—ﬂ’é" = u(l —&+ ) —£=0, (25 ;

‘Where”{"‘:dé/dr and o u

B=16%2>0. (26)

‘The case of toj—#S.O, 20=>5.0 is shown in Fig. 8. In this
case the signal is amplified in the course of transmission.

the signal height (there being an asymptotic value and

2) a signal higher than the asymptotic value is at-

These actions rﬁéy;'bé‘called “shaping” with reépect :

If the pa\r"ci;lidvi"ffe‘rential equation (22) has a wave-

- without suffering distortion and with a constant velocity =
(say ), then the solution. must be a function of ..

_teduces the partial differential equation (22) to an

. Fig. 7—A schematic display of the boundary-value problem (23). = = -

1 o~ :

I’
05 10 o 30 35

H

Fig. 8—A signal above the threshold val‘ue ‘and below the

-

asymptotic value is amplified during transmission. ’

t

Fig. 9—A signal above the asymptotic value is
’ attenuated during transmission.

-

0,
Yy

Fig. 10—A signal below the threshold value is
- eliminated during transmission. ‘

; pulse height .

Attenuation

asymptotic value

Amplification

. ~threshold value

distance

Fig. 11—Signals are amplified or attenuated or
eliminated according to their heights.
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For the time being, 8 remains an unknown constant.

"In fact, its determination constitutes a part of the object

of the following procedure. Now, it is obvious that (25)
has a resting solution £=0. If (25) has a solution, except

= for £=0, such as £(r)—0 when 7— £ « for some f3, then

the solution corresponds to the asymptotic waveform
which we are seeking, and the transmission velocity of

- the asymptotic waveform is determined from §.

- The behavior of £(r) in the neighborhood of the rest-
ing solution is determined approximately by a linear
differential equation

B — g —w —g=0. (D)
The characterxbtlc equatmn of (27) ‘
HO) =g - N—m—1=0  (9)

has one real positive root,» since H(O)= —1<0,

H'(0)=—p<0 and H(+ ©)>0. By denoting this root
as Ao(ho>0), H(\) is factorized as ,

HQ) = A = M)(BN 4+ vA + A7),

1\
REA A+(>\o>

where

' Smce'y>0, it is apparent that both of the other two

roots are either real negative or complex conjugate with
negative real parts.

From a more precise examination it is easily seen that -

when p>2 and B <Bos(n), they are real negative; other-
wise they are complex conjugate with negative real
-parts, where

1 . , )
Bolu) = 7 (2p® = 9+ 2vV/p* = 9t + 27 — 27).

Now, if £(r)—0 when 7—— =, as shown in Fig. 12,
then £(r)~Ae (4 is an arbitrary constant), when 7
has a negatlve large Value Therefore we have

é’('r) ~ Ahed, g"(f) ~ AN,

We shall perform numerical calculations for the third-
order ordinary differential equation (25) with the fol-
lowing initial conditions:

£(0) = A,
E,(O) == }‘OAr
£7(0) = A4,

where A(A>O) is the smallest step of £. It is noted that
Mo depends on B. A

In general, the solution of (25) correspondmg to the
initial conditions in (29) depends on the value of 8; and
we are seeking for ‘exactly the § for £(v)—0 when
T— -« as shown in Fig. 12.

When p=3.0, e=0.1, two such values of § were ex
pected to exist from the results of digital computations
One of them is $=0.44488, which corresponds to
stable asymptotic waveform (Fig. 13), and this is wha
we are aiming at. The other is $50.938 and correspond
to an unstable asymptotic waveform (Fig. 14), which i
a critical signal traveling down the line along th
threshold and being physically unrealizable.

Because the stable asymptotic waveform is peculia
to this line, it may be expected that the line will show :
waveform shaping action, in respect not only to th
signal height but also to the signal width.

Fig. 15(a) shows the relation between p and 51gna
propagation velocity 6 in the case of e=0.1. The velocit
of the stable asymptotlc waveform seems to be a mono
tonically increasing function of p.

Since

-85
'5““-—— \/ckO

B S A

the propagation velocity is inversely proportional t
742, Furthermore, it may be concluded that the velocit
increases with increasing L and/or decreasing C, pr
vided 6(x) is monotonically increasing.

Fig. 15(b) shows the relation between u and puls
height in case of e=0.1. The shape of the stable asym
totic waveform approaches to a rectangular pulse as
increases, although its height hardly depends on u.:

It may be expected that the stable asymptotic wav.
form commdes with the unstable one at p=2.

[+

VIII. E}xPERIMENTS

We fabricated a lumped constant cascaded circu
with nine stages as shown in Fig. 16 and the expect
results were obtained. In particular, it was observ
that the shaping action in respect to the signal height
was completed at the first stage, while the shaping
action in respect to the signal width was very weak in
comparison with the former (Fig. 17). i

In order to make the shaping action in respect
pulse height more moderate, it is effective to add so
inductance to each interstage coupling resistance
series. The circuit (Fig. 18, page 2068), in the case 0
C=0.05 pf, shapes travelmg signals with respect to t
height (Fig. 19). On the other hand, Fig. 20 illustrate
the shaping action with respect to the width of the cir-
cuit shown in Fig. 18, in the case of C= 20 pf (Junctl i
capacitance of TD). .

Since this line has a symmetrical structure, the sign
transmission is bidirectional, that is, a signal applied
the right (left) end is transmitted to the left (right) a
a signal applied to the middle of the line is transmitted
in both directions. An interesting phenomenon is tha
two signals traveling in opposite direction from both
ends vanish at the collision point.
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Fig. 12—If (25) hyas 'a édlﬁtion, except for 5(1-)50, éuqh as E('r)—»()‘

when 7—+ « for some 8, then the solution corresponds to the
sought-for asymptotic waveform, and the transmission velocity of ..

the asymptotic waveform is determined from the 8.

&

,®v o n=g

+=01
e W - @F=0.437
12F e T @B=o0.8a57
e @ 3=0.42887
e i @3=0.4u490
'8[ Fgalpl ©’=0-N}88 T
2F . / ®.
T 25 :
b o @ o
| @

Fig. 13—For 6%0.44488, it is éxpected thata -
. stable asymptotic waveform exists. = . -

3 A
@d=t.0r
T @p=oas
U @ h=o0.95
19 P opmd T L @3 00932
8 e=01 ® =001
14 L . .
4 ) ® ® . -
: . AR
M 3 3
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Fig. 14—For B=0938, it is 'expected that ‘an unstable asymptotic *

waveform exists, which travels down the line along the threshold
and is physically unrealiz’abl’e.’ ST

46 8 10 &

o @
‘ pcﬂsc height )

. 18} E= gt

. ' BrAsLE
SRS §-1 I (’f__—

"'3 ’

= )

ol

o : )

Fig. 15—The relation between u and the signal propagation velocity
and the relation between u and pulse height in case of e=0.1. It
seems that the stable asymptotic waveform coincides with the
unstable one at u=2. (a) The velocity of the stable asymptotic
waveform seems to be a monotonically increasing function of p.
(b) The pulse height of the stable asymptotic waveform hardly
depends on .

Sl ST R=T0 9, 7=500 ©, Eo=100 mv, C=0.01 4f.

+ 2

<)

Fig. 16—The circuit used in our experiments. L=4 mh, .

)

Fig. 17—The circuit in Fig. 16 shapes a signal waveform during
transmission. In each figure, the first waveform is that of the
input signal; the second, third, fourth and the fifth waveforms
are those observed at the first, fourth, seventh and the ninth
stages in the circuit in Fig. 16(a), respectively. In both cases, the
signals achieve the same waveform. (a) A narrow signal (6 usec)
is widened in the course of transmission. (b) A wide signal
(32 usec) is narrowed in the course of transmission.
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* Fig. 18—By adding some inductance to each coupling resistance”

Fig. 19—Waveform shaping action with respect to the signal height

Fig

% C==20 pf, other constants are the same as those in Fig. 19. -
The correspondence of lines and stages is the same as that in -

in series, the shaping action can be made more querate. B

of the circuit in Fig. 18 displayed on a CRO screen. L'=]=4 mh,

R=115 9, r=200 2, Eo=150 mv, C=0.05 uf. In each figure,

the waveform in the first, second, third, fourth and ffth lines
are those observed at the first, third, fifth, seventh and ninth

stages in the circuit shown in Fig. 18, respectively. Pulse heights -

in the bottom lines in (a) and (b) are equal and 150 mv. [Note

signal with 30-mv height is amplified in course of transmission.

- (b) A large signal with 380-mv height is attenuated in course of

transmission

. 20—Waveform shaping action with réys‘péct‘to the signal width = ..

of the circuit in Fig. 18 displayed on a CRO screen. In this case,

.. Fig. 19. Pulse width in the bottom lines of (a) and (b) is equal—

10 usec, (a) A narrow signal with S-usec width is widened in the
course of transmission. (b) A wide signal with 30-usec width is
narrowed in the course of transmission. '
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...neuristor may be visualized as .a .one-dimensiona
- channel along which signals may flow. The mode of sig

- digital logic system. can be realized using arrays o

k ‘basically different modes—T junctions and S junctions

~ mission lines at'a ‘point. The S junction is realized

 where k=M/L, 0<k<1.

that vertical -scales are different in (a) and (b)]. (a) A small =

~ cuit and five stages of the S junction (Fig. 22).

- using p-n-p-n diodes toward an electronic realization o
* the neuristor. The use of current-controlled negative

~ - more complicated.’

" B. Active Sufface ;

- Qur active pulse transmission line ‘may easily be e

. corresponding Vtoik,’(22), ‘becomes -

. ristor Studies,” Solid-State Electronics Lab., Stanford University,

- IX. RELATED PROBLEMS -
- A. The Neuristor - '

Crane proposed a novel device termed neuristor.’® A

‘nal propagation is somewhat analogous to that whict
_occurs along a nerve axon. The neuristor may be used
to synthesize all digital logic functions, so that any

“neuristors only. Neuristors are interconnected in twec

Our active pulse transmission line can lead to ar
electronic realization of the neuristor. The T junction is
readily realized by connecting three active pulse trans

the circuit in Figt 21. Corresponding to (22), the dif
ferential equations which represent signal propagatior
along the S junction are as follows: V

e a5, .

v

. N )
oo gp Tl mT e’
bt g T
CtioErtio e
3%z 9%, , Ie228
ot o ,/"+ ”(‘1 R + 5222) o
S eyl Sy

~ The storage ring of the neuristor was realized b

‘making a loop with forty stages of the monostable ¢

- Cote has published an active pulse transmission lin
resistance elements, however, seems to make the circ

tended to an active surface with the structure show
Fig. 23. The differential equation of this active surface

o o o ow gy
+#(1;;"Z+€Z‘)5+Z,",

+ -
0t8x?  Jtoyr o

S B rided E

8 H. D. Crane, “The neuristor,” IRE TRrANs. ON ELECTRONIC
CompuTERs, vol. EC-9, pp. 370-371, September, 1960; also, “Neir

Stanford, Calif., Tech. Rept. No. 1506-2, July, 1960; also H. D
Crane, “Neuristor—a novel device and system concept,” this iss
p. 2048. :
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Fig. 21—An S ]unctlon of the neurlstor can be reahzed by couplmg
two monostable circuits by a mutual inductance. L=358 mh,

M=355 mh, R= 709 Z-‘r—i-;bll 4mh r= 709 Eo 70mv,
C=0.01 pf. =

Storage Ring
L e

along the “storage rmg 7. The contents of the storage rmg can
be obtained from the “read out” line.

- Fig, 22-Slgnals enter from the “entry” and continue to circulate

Transmission Line Simulating Nerve Axon PP - 2069 .

E,

Fig. 23—The structure of the active surface
represented by (32).

X. CONCLUSIONS o

To electronically ‘simulate the dlstrlbuted BVP‘

model, which may be considered as a simplified Hodgkin-

Husxley model describing the propagation of the excita- |

tion of the nerve axon, we have made an approximately

~ distributed active pulse transmission line using tunnel

diodes. The line behaves similarly to the living axon,
but the representation is gross.

" The line is constructed by cascading ‘many mono- :
~ stable circuits and consists essentlally of the followmg"

four parts:

1) transverse power voltage supply,
2) transverse inductance,

- 3) transverse tunnel dlode
4) longltudmal couphng resxstance

* The active line shcws the followmg characterlstlcs in
the transmission of signals:

1) There is a certain threshold value in respect to the

signal height, and signals below the threshold
" (or noise) are eliminated during transmission.:”

~2) The line shapes signal waveforms.’ Namely, there P
" being a spec;ﬁc pulse-like waveform peculiar to
~ this line, signals above the threshold approach it

durmg transmission.
3) Since this line has a symmetncal structure, the

signal transmission is bidirectional. Two signals .~
traveling in opposite directions from both ends = .

vamsh at the collision point.

On account of the existence of the threshold and the ’;
shaping action, this line makes possible highly reliable
pulse transmission, and will be useful for various kinds

of information-processing systems.

%
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APPENDIX

We shall briefly sketch the electrical behavior of the
surface membrane of a nerve axon following Hodgkin
and Huxley.?

The electrical behavior of the membrane in the case
of a “space clamp” may be represented by the network
shown in Fig. 24. Current can be carried through the
membrane either by charging the membrane capacity
(Cy) or by movement of ions through the resistances in
parallel with the capacity. ‘

The capacity current I¢ is given by

dE
Io = Co—:i? . (33)
) ’, Outside
I!I :
L L - L AL
3 ¥ £y
2 gaa z9 =
=Co ;‘9\, A ) = E
;—'—Em i::'"_EK‘ ;"EL

Lnsxdé

Fxg 24—Equivalent circuit representing the
electnc behan ior of the membrane.

The ionic current is divided into components carried
by sodium and potassium ions (In. and Ix) and a small
“leakage current” (I1) made up by chloride and other
jions. Each component of the ionic current is determined
by a driving force which may conveniently be measured
as an electrical potential difference and a permeability
coefficient which has the dimensions of a conductance.
Thus the sodium current Ix, is equal to the sodium con-
ductance (gn.) multiplied by the difference between the
membrane potential £ and the equzhbrlum potent1a1 for
the sodium ion Em

Ina = gna(E — Ena)- (34)
Similarly we have
Ix = gx(E — Ep), (35)
I = gi(E — Ei). ~(36)
Eqgs. (34)—(36) may be rewritten
Iva = gna(V — Vi), (37)
Ix = gg(V — Vi), (38)
Iy, =g (V—Vy), (39)
where 1 ;
V" = E — Ep, Vsa= Exa— Er, Vi = Ex — Eg,

VL = EL - ER7

PROCEEDINGS OF THE IRE

and Ep is the absolute value of the resting potentia
V, Vna Vi, and Vi can then be measured directly g
displacements from the resting potential.

- We then assume that the sodium conductance g,
represented by

gNa = gNamak’ ’ (4
dm ' -
—— = an(l — m) — Bum, (4
dt ‘

ak (1 =k — Bk | 4
— -} A,

a B (

where fn. is a constant with the dimensions of conduc
ance/cm?; a’s and B’s are rate constants which var
with voltage (V) but not with time (¢) and hav
dimensions of [time]™; m and % are dimensionless var
ables which can vary between 0 and 1.

These equations may be given a physical ba51s
sodium conductance is assumed to be proportional
the number of sites on the inside of the membran
which are occupied simultaneously by three activating’
molecules but are not blocked by an inactivating mol
cule. m then represents the proportion of activating
molecules on the inside and 1 —m the proportion on th
outside; % is the proportion of inactivating molecul
on the outside and 1—% the proportion on the ins
Clm OF ,8,, and 8. or o represent the transfer rate co
stants in the two directions.

The forms of a's and 8’s as functions of I/ are dete
mined experimentally as shown in (1).

Similar equations for gg are .

gx = gxnt, (43).
B (a9
ik It (
Summing up these equations, we have
I=1Ic+Ina+ Ixg+ It
av ,
= CO’E"’}“ gNkam"’k(V - VNa) + gxn*(V — Vi)
+ 2.V — Vo), (43)

as shown in (1).
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