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ANALYSIS OF CATEGORICAL DATA BY LINEAR MODELS

JamEes E. Grizzre!, C. FraNk STARMER?, AND GARY G. Koca!

1Department of Biostatistics and 2Department of Biomathematics, University of
North Carolina, Chapel Hill, North Carolina 27614, U. 8. A.

SUMMARY
Assume there are n;, 7 = 1, 2, --- , s, samples from s multinomial distributions each
having r categories of response. Then define any u functions of the unknown true cell prob-
abilities {mi; 14 =1,2, -+ ,8;7 = 1,2, -+, r, where Z,Ll wi; = 1} that have derivatives

up to the second order with respect to w:;, and for which the matrix of first derivatives is of
rank u.

A general noniterative procedure is described for fitting these functions to a linear model,
for testing the goodness-of-fit of the model, and for testing hypotheses about the parameters
in the linear model.

The special cases of linear functions and logarithmic functions of the =;; are developed
in detail, and some examples of how the general approach can be used to analyze various types
of categorical data are presented.

INTRODUCTION

Berkson has pointed out in 1968 and on several other occasions that the
minimum logit x* gives, for all practical purposes, numerically the same esti-
mates and test statistics as maximum likelihood and Pearson’s x* for a variety
of problems. There seems to be no widespread realization that the minimum
logit x* is only one member of a family whose test statistics have, in large
samples, the x*-distribution if the null hypothesis is true; and that exploiting
this fact leads to a unified approach, both conceptually and computationally,
for analyzing categorical data. The computing aspects of the analysis of
categorical data have been oriented to the desk calculator which tends to keep
powerful general approaches from emerging, even though they have been
available for some time. The general approach has the advantages of giving
the analyst more latitude in choosing models and testing hypotheses which are
precisely tailored to specific data, and makes it possible to have computer
programs for the analysis of categorical data comparable in generality to those
developed at many places for the analysis of linear models. The purpose of this
paper is to present a general approach to the analysis of categorical data and to
illustrate its use by examining some special cases. These methods represent an
alternative set of procedures to those of Lewis [1968] which are based on maxi-
mum likelihood estimation.

The theoretical justification for the method presented can be found in
Wald [1943] and Neyman [1949]. The equivalence of these two approaches for
the class of problems we shall consider was demonstrated by Bhapkar [1966].
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NOTATION

To fix ideas, consider the hypothetical data shown in Table 1 and the ex-
pected cell probabilities shown in Table 2.

TABLE 1

FREQUENCY DISTRIBUTION

Categories of response

Populations
(factors) 1 2 CEI T Total
1 N1 N1 . Nir ni.
2 Na1 Nag D Nar N2,
s Ns1 Nsg Ngr Ne
Define
®m= g, T, ]y ® = [ml w0, w;
1Xr 1Xrs
— cn! — . — .
Pis = Nii/Mi. 5 PE = [Par v P2y =+ ,Der; D = 1[D1,P2, -+, PI;
IXr 1Xrs
71'.'1(1 - 77'.'1) TTaTiz s TTaTir
1 — e Tio(l — mi2) - — e
var (p,) = V (W,) _ 12041 1 ( 1) i ir ;
rXr nl.- . . DI .
Tl Wi T2 te 7T|‘r(1 - W;r)
V (p:) = sample estimate of V(=,);
rXr

V(p) = block diagonal matrix having V(p;) on the main diagonal;

raXre

fu(=) = any function of the elements of = that has partial derivatives up to

TABLE 2

EXPECTED CELL PROBABILITIES

Categories of response

Populations

(factors) 1 2 SR r Total
1 ™ 12 coee Tir 1
2 w21 T2 e Tor 1
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second order with respect tothe 7,y ,m = 1,2, - -+ ;u < (r — 1)s;
fn(@) = fu(=) evaluated at = = p;
F@) = [fi(=), folx), -+, fu(®)];
F' = [Fl(®)] = 1), £-0), -+, 1.0

o - [

uXrs aﬂ'ii

Tij = pii] > S = HV(p)H'.

uXu
The matrix S is the sample estimate of the covariance matrix of F. When f,.(p)
is a linear function of the elements of p, S is the exact covariance matrix of F;
when ,,(p) is a non-linear function of the elements of p, S is the asymptotic
covariance matrix of F which is obtained by the ‘delta’ method.

We assume that the functions f;(x) are jointly independent of one another
and of the constraint > ,%, m;; = 1, 1=12,.--,s;ie.,bothH and HV(x)H’
are of rank 4. When these conditions hold, then S is of rank 4. However, for
some types of data, if some of the n;; = 0, S will be of rank less than 4. There-
fore, if difficulty is created by an occasional n;; = 0, we follow Berkson [1955],
appendix 3, and suggest that it be replaced by 1/r. This has the effect of making
the estimate of m;; be 1/rn;. , which is the extension of Berkson’s procedure to
the multinomial case. However, we have made no extensive investigation of the
effect of this rule in the multinomial case such as Berkson did for the binomial
case. Incidentally, the method of estimation and testing set forth in this paper
will yield Berkson’s minimum ‘logit x> when specialized to s binomial distribu-
tions, r = 2, and the logit transformation, f,.(p) = log,(p;;/p:2). Thus Berkson’s
[1955] work throws considerable light on the properties of our method for the
special case he investigated so thoroughly.

ESTIMATION AND TESTING

To summarize, thus far we have defined w parametric, possibly non-linear,
functions of =, the {f,.(x)}, their estimates {f.(p)}, and their asymptotic covari-
ance matrix HV(p)H'.

Assume that F(x) = X @ , where X is a known design matrix (which is
uX1 uXo oX1

different from the usual design matrix when more than one function is con-
structed within each population as will be illustrated later) of rank v < % and 8
is a vector of unknown parameters.

Several workers have shown that if the hypothesized model fits the data, a
best asymptotic normal (BAN) estimate of 8 is given by b, when b is the vector
which minimizes (F — Xb)’S™'(F — Xb). The minimum value of this form may
be used to test the fit of the model F(x) = X8. Given that the presumed model
provides an adequate fit to the data, a test of the hypothesis H, : C§ = 0 is
produced by conventional methods of weighted multiple regression, where
Cis a (d X v) matrix of arbitrary constants of full rank d < ».

The test statistic for the fit of the model is

SS[F(x) = X8] = F'S”'F — b/(X'S™'X)b
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which has asymptotically a (central) x*-distribution with « — v p.F. if the model
fits, where b = (X’S™'X)'X'S™'F. Given the model, the test of the hypothesis
H, : C3 =0 is produced by SS[C8 = 0] = b/C’[C(X'S'X)™'C’]"'Cb which has
asymptotically a x*-distribution with d p.r. if H, is true.

In many cases there is only one population and the objective of the statistical
analysis is to study the relationships among several ways of classification of the
sample units. Many tests appropriate to this problem can be formulated as
F(x) = 0. This fits into the general framework by setting X = 0, the null ma-

uX1

trix. Thus the teststatisticis F’S™'F, which has asymptotically a x*-distribution
with u p.r. if H, is true.

SPECIAL CASES OF f(=)

The form of S depends on H and through H on the function F(x). Therefore
for each family of functions F(x), S will be different. Fortunately two classes of
functions cover most applications discussed in the literature thus far. For linear

relationships, one can define a family of functions, F(z) = A =« , where
uXrs reXl

G111 Quiz **° Guir 53 Qi217Gige * 002,75 5 Qie1 Giez **° Qugy

A= (211 Q212 *** Ao1r 3 Qog1 Aoz **° Qage 3 * 5 Uog1 Aage **° Uggy

Au11 Quiz **° Qs ; Au21 Qyoz **° Qyoy ; tee ; Aus1 Ayusy *°*° Quar

is of rank w4 < s(r — 1); the a,;; are arbitrary constants. For logarithmic
relationships, one can define the family of functions

F@x = Klog, A =;

tX1 tXu

uXrs raXl

the a-th element of F(=) has the form
Fo(x) = Z; Koy log, (Z QyiiTii),
= 1,1

where the a,;; and k., are the appropriate elements of A and K, respectively.
Here, K is a matrix of arbitrary constants of rank ¢ < w < rs. Some care must
be exercised to make sure that the H associated with the functions described
above is of full rank (i.e., of rank u for the linear case and of rank ¢ for the
logarithmic case).

The matrix of partials of the first transformation F(x) = Az isH = 0F /o=
= A,andS = AV(p)A’. In thesecond case H = [9F/d= | = = p] = KD 'A and
S = KD 'AV(p)A'D'K’, where A is as defined previously; and

a{p 0 e 0
D = 0 ap --- 0
0 0 a,p
where a/ represents the y-th row of A.
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Many hypotheses can be produced as special cases of this formulation when
correctly chosen matrices of constants are inserted for X, C, A, and K. This will
now be illustrated.

ONE POPULATION PROBLEMS

Data collected on a single population are often tabulated in a multi-way
table to study the association among the attributes defining the ways of classifi-
cation; also other aspects of the structure of the data may be of interest. The
data in Bhapkar’s [1966] numerical example, shown in Table 3, are a good
illustration of the latter case.

The hypothesis to be tested is homogeneity of marginal distributions. From
a sampling point of view we have 7477 observations from a bivariate distribution,
or a single multinomial distribution cross-classified two ways. Thus the appro-
priate hypothesis written in terms of the multinomial parameters is H, : m, =
M1, My, = W, M3, = T3, s, = T4, Wherem; = Zi my and T = Z; Tif »
This hypothesis can be written F(x) = A= = 0. Notice that =, = 7., implies
T2 + Mg + T4 — Ty — w1 — m = 0. Thus H, can be written as A= = 0 if
we note that

ﬂ’-_:(7,-117,-12’...,7714;7r217r22’...’71-24;...;7,-“1,-42’...’7,-44)
and choose
601 1 1-10 0 O0-1 00 O-1 O OO
0-1 0 0 10 1 1 0-10 0 O0-1 00/
o 0-1 0 00-1 0 1 10 1 O O0-10
o 0 0-1 00 O0-1 0 00-1 1 1 10

This matrix gives the correct hypothesis but it is singular since the sum of the
first two rows is the negative of the sum of the last two rows. Therefore the
test can be produced by deleting any row of A. These calculations reduce to

TABLE 3
7477 woMEN AGED 30-39; UNAIDED DISTANCE VISION
Left eye
Highest Second Third Lowest
Right eye grade grade grade grade Total
Highest grade 1520 266 124 66 1976
Second grade 234 1512 432 78 2256
Third grade 117 362 1772 205 2456
Lowest grade 36 82 179 492 789
Total 1907 2222 2507 841 7477
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X? = p’A¥(A*V(p)A*)~'A*p, where A* is the original A with one row deleted.
When A is singular, the X* produced is invariant under the choice of a row basis
of A.

Denote the first row of A* by a, , the second by a, and the third by a; . Then
a;p = 0.00923, a,p = 0.00455, a;p = —0.00682; p’A¥ = 107%(0.923, 0.455,
—0.682) and

0.1507 —0.0894 —0.0430
A*V(p)A*' = 107" | —0.0894  0.2601 —0.1420 |-
—0.0430 —0.1420  0.2538

Thus X* = 11.98 with 3 p.r.

Cochran [1950] discussed a problem for which he developed a test (some-
times called the @ test) by a permutation argument. An alternative test which
is due to Bhapkar [1965] can be derived by the techniques presented. The data
on 42 subjects, shown in Table 4, are used as an example. The subjects were
given drugs 4, B, and C. Some had a favorable response to a single drug, some
to two, and some to all three. The patterns of response and the number of
subjects showing each pattern are shown in Table 4.

If the three drugs are equally effective, E(T,) = E(T,) = E(T;). Thesedata
are considered as a single multinomially distributed sample of 46 in which each
sample unit exhibits one of eight patterns of response. The hypothesis can be
formulated in terms of cell probabilities as

mtmtmtrm=mtmntrta=m+ s+t o

which simplifies to 7, — 7, = 7, — T = 7T, — 7.
Then choose

TABLE 4

TABULATION OF RESPONSE TO DRUGS A, B, aND C
(1 DENOTES FAVORABLE RESPONSE, 0 DENOTES UNFAVORABLE RESPONSE)

Pattern of response

A B C Number Expected probability
1 1 1 6 T
1 1 0 16 T2
1 0 1 2 w3
0 1 1 2 Ty
1 0 0 4 ™5
0 1 0 4 g
0 0 1 6 ™
0 0 0 6 s
Number favorable 46 1

28 28 16
T, T Ts
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fl(ﬁ)=1ra—-7ry—7r4+7r5=0, fz(ﬂ)=7rz—7r7"“7l'3+7ra=0.
A test of this hypothesis is produced easily by choosing

A=[01 0—110—10}
01 -1 001 —10

Then
e 46 [ 05406 —0.41017 .,
AVEA)™ = 15 [—0.4101 0.5406] 10,
a,p = 0.26, ap = 0.26,
and

X? = [ap, a,p](AV(p)A")™? [a‘p} = 6.58
asP.

which has a x*-distribution with two p.F. if the null hypothesis is true. Cochran’s
Q test yields X* = 8.47. The relative merits of these two tests are not known.
We mention the competitor here to show how the general method can be used to
produce tests for a variety of problems which might be considered non-standard.

Another test of interest for the data in Table 4 is that of no interaction (as
formulated by Bartlett [1935]) between the responses to the three drugs. One
set of procedures (considered by Goodman [1963] and Plackett [1962]) is based on

f(ﬂ) =1n7r1-—1117r2-—1n7ra—1n7r4+1n7r5+1n7ra+1n7r7——1n7r8=O.

This test is directed at the general question of whether the effect of any two of
the three drugs is independent of the third. This test fits into the general
formulation by choosing

F(x) = K log, A=
with A = I and
K=1[,-1,-1,-1,1,1,1, —1].
Hence

KD"‘A.____.[_]:_’_l_,__.];.’_.];.,.l_.’.l_.,.];.,___l_.:l,
D D2 Ps Ps Ps DPs Pr Ps

and
KD 'AV(p)A’'D'K’ = 2.0625; f(p) = 0.405.

Thus X? = 0.08, which has one p.r. Therefore the hypothesis of no interaction
is not rejected.

The contrast tested is easily produced by observing that it is equivalent to
the contrast for no three-way interaction among the logarithms of the cell
probabilities of a 2* factorial experiment.

Many other examples could be given of published tests which follow from
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this approach. The tests in Bhapkar and Koch [1968] can be generated in an
obvious way by selection of the appropriate matrices. The difficult part remain-
ing, which is true of all applied statistics, is that of choosing appropriate models
and formulating the most informative hypotheses.

SEVERAL POPULATION PROBLEMS

The analysis of data collected on several populations (groups, factors) has
many analogies with the analysis of variance. These analogies can be exploited
usefully in many situations. We start with the basic model

F(=) = X8

and choose F(=) and X to suit our purpose. The data shown in Table 5 will be

used to illustrate this method of analysis.
The data in Table 5 are a tabulation of the severity of the ‘dumping syn-
drome,’” an undesirable sequela of surgery for duodenal ulcer.

The four operations are:

A = Drainage and vagotomy;

B = 259, resection (antrectomy) and vagotomy;

C = 509, resection (hemigastrectomy) and vagotomy;
D = 759, resection.

Assign the categories of response, none, slight, and moderate, the scores
1, 2, and 3, respectively. The mean score for each treatment within each

TABLE 5
SEVERITY OF THE DUMPING SYNDROME

Hospital
1 2 3 4
Clinical
evaluation Surgical Surgical Surgical Surgical
of severity procedure procedure procedure procedure
of dumping

syndrome A B C D| A B C D| A B C D| A B C D

None 23 23 20 24 |18 18 13 9 8 12 11 7 |12 15 14 13
Slight 7 10 13 10 6 6 13 15 6 4 6 7 9 3 8 6
Moderate 2 5 5 6 1 2 2 2 3 4 2 4 1 2 3 4
Total N 32 38 38 40 |25 26 28 26 |17 20 19 18 |22 20 25 23
Average

score 1.3151616({1.31.41.61.7(1.7161.51.8{1.51.41.61.6
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hospital, calculated by 1p:; + 2p.2 + 3p:s , is the f(p) used in the analysis. In
matrix terms this f(p) is constructed by choosing

123 000 000 --- 00O
000 123 000 --- 000
A=ooo . e e e s . . e . LI K]
IGX48 . e e . e . . e . C ) « o e
000 000 000 - .- 123

Then set Ap = X@, where X is the design matrix of an additive model having
hospital and treatment effects. We show X in reparametrized form of full rank:

1 1 0o o 1 o0 O]
1 1 0 0 0 1 0
1 1 0 0 0 0 1 o
1 1 0 0 -1 -1 -1 I
1 0 1 0 1 0 0
1 0 1 0 0 1 0 o
1 0 1 0 0 0 1 o
10 1 0 -1 —1 =1} . o
X=[1 0o o 1 1 o o @ E=ja,
1 0 0 1 0 1 0 T
1 0 0 1 0 0 1
1 0 0 1 —1 —1 -1 T2
1 -1 -1 -1 1 0 0 L7a_|
1 -1 -1 -1 0 1 0
1 -1 -1 -1 0 0 1
1 -1 -1 -1 —-1 —1 -—1]
where

p = effect of the general mean;

a; = differential effect of the ¢-th hospital, ¢ = 1, 2, 3;

r; = differential effect of j-th treatment, j = 1, 2, 3.

The estimate of a, can be caleulated by ¢, = —&, — 4, — & and similarly

?4= —'?l—fg—"?g.
The estimated parameters are

p=154,8 = —004,8 = —0.04, 4, = 0.11,
& = —(—0.04 —0.04 + 0.11) = —0.03,

# = —0.11, #, = —0.07, %, = 0.05,
#, = —(—0.11 —0.07 + 0.05) = 0.13.

The following C matrices are used to compute the sum of squares for hospitals
adjusted for treatment effects and treatments adjusted for hospital effects.
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01000 0 0]
Chtomitr = |0 0 1. 0 0 0 0,
00010 0 0]
[0 00010 0]
Corroatment = |0 0 0 0 0 1 0
0 000O0O0 1]

The results of these tests can be summarized in an ‘Anova’ table.

ANOVA
Source of variation Sums of squares Degrees of freedom
Hospitals 2.33 3
Treatments 8.90 3
Error 6.32 9

These sums of squares are compared to the tabular values of x* with the
appropriate degrees of freedom. The error term does not approach statistical
significance. This is interpreted to mean that an additive model having only
mean, hospital, and treatment effects fits the data adequately. There are no
significant hospital effects. However, treatment effects are significant at less
than the 0.05 level.

A Scheffé type of multiple comparison procedure can be used (see Goodman
[1964]) to investigate treatment differences further. It consists of comparing
the test statistic for a single contrast C§ = 0 to the percentage point of the
x°-distribution with » p.F., where v is the rank of the vector space which generates
all possible contrasts for which the analyst wishes to control the frequency of
Type I errors. Alternatively, a Scheffé type confidence interval for C3 can be
derived by

Cb + v/[x.C(X'87'X)7'C],

where x° is the appropriate percentage point of the x*-distribution with » p.r.

In this example it should be interesting to relate the severity of the dumping
syndrome to the amount of stomach removed, and since the amount removed
by the operations are approximately 0, 1, %, 4, we ask if the severity is related
linearly to the amount removed. This can be tested by Hy : —37, — 7, + 73 +
37, = 0 due to the equal spacings in the amount of stomach removed. In the
reparametrized form this hypothesis becomes —3r, — 7, + 73 4+ 3(—71 — 72 —
13) = —6r;, — 47, — 273 = O or 3r; + 27, 4+ 73 = 0. This hypothesis can be
tested easily by choosing C = [0, 0, 0, 0, 3, 2, 1].

The resulting sum of squares is 8.74 which we compare to the tabular value
of x* with 3 p.r. if we wish to control the error level conservatively. Therefore
we reject the hypothesis that there is no linear trend. From the amount of the
total sum of squares for treatments accounted for by the test of linear trend and
by examining the treatment mean scores, it is apparent that the severity of the
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syndrome increases at least approximately linearly with the amount of stomach
removed.

When the linear model was introduced, a remark was made that the matrix
X was not always the same as in univariate multiple regression. As long as a
single function is constructed within each of the s populations, the analogy with
multiple regression remains unbroken. However, when two or more functions
are constructed within each population, modifications must be made. Fortu-
nately, they are rather simple.

We shall use the data presented by Kastenbaum and Lamphiear [1959],
recently reanalyzed by Berkson [1968], to illustrate the method. The approach
we shall present supplies a test of interaction which is equivalent to that of
Berkson. Both Berkson’s and ours are tests of the same hypothesis originally
treated by Kastenbaum and Lamphiear, but they differ in the method of
estimation used. The data described in Kastenbaum and Lamphiear’s paper
are shown in Table 6.

In this case r = 3, and s = 10. Both Berkson, and Kastenbaum and Lamp-
hiear have shown that there is no interaction in the sense defined originally by
Roy and Kastenbaum [1956]. An alternative interpretation of their tests, which
leads numerically to the same statistic as calculated by Berkson and to other
tests, is the following: define w0, 7y, T2 to be the expected probabilities of
observing 0, 1, 24 depletions respectively, and write

lio=1In (Wio/sz) and I, =1In (7";‘1/7";2)-
If the logarithmic functions I;, and 7;; can be considered as additive functions of

the mean effect, litter size effect, and treatment effect, there is no interaction
(see Bhapkar and Koch [1968a, b]). The equations associated with this hypoth-

TABLE 6
Data or KASTENBAUM AND LAMPHIEAR [1959]

Litter
size Treatment Number of depletions
0 1 24 Total

7 A 58 11 5 74
B 75 19 7 101

8 A 49 14 10 73
B 58 17 8 83

9 A 33 18 15 66
B 45 22 10 77

10 4 15 13 15 43
B 39 22 18 79

11 A 4 12 17 33
B 5 15 8 28
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esis are the same as those derived by Roy and Kastenbaum. However, they
were concerned with the one population problem with three responses, whereas
the data in Table 6 should be considered as ‘one response, two factors.” Then
given the additive model, tests can be made on the treatment and litter size

effects. To generate these tests we set

Each non-zero block of X is derived from a reparametrization of the usual

O = oo O O O
- o O 0 o o o O

0

1-1-1-1-1

o] [1 1 1 0
Lo 1-1 1 0
b 11 0 1
o 1-1 0 1
lao 1100
lao 1-1 0 0
o 110 0
lao 1-1 0 0
leo 1

hoo| | Lml=t—l=1—1
==

Iy

Iy

L

L 0
b 10 X 6
ln

lsy

las

Lhond L
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0 o |

10 X 6 %o

Qg

Q30

[277:)

QAo

1710 0 0 || e

-1 1 0 0 0 | au

1 0 1 0 0 | au

-1 0 1 0 O ag;

1 0 0 1 0 | au

-1 0 0 1 0 | a.
1 0 0 0 1
-1 0 0 0 1
1-1-1-1-1

-1 -1 -1 -1 -1

analysis of variance model so that it will be of full rank.

In terms of the general model originally presented F(x) = K¢, where ¢ is the

vector of logarithms of the elements of Az with A = I; and

K |00 0
20X30 01__1
00 O
00 0

(10 -1 00
00 0 10 —1

0

00 O
00 O
01 -1
00 O

00 O]
00 0
10 —1]
00 0
00 0
01 —1]
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The first ten rows of K pertain to the I, and the second 10 rows to the I,; .
Once K and A are specified, it is an easy matter to compute the asymptotic
covariance matrix of the sample l;, and I,, , viz. ;o and [;; . Next, the sample
estimates are substituted for K¢ and its covariance matrix, and the remainder of
the calculations are identical to weighted multiple regression. The estimated
parameters are

ﬂo = 0.945, &10 = "“0.278, &20 = 1.415, &30 = 0.846, &40 = 0.195, &50 = "‘0.514:
ﬁl = 0.400, &11 = ’_‘0.278, &21 = 0.474, &31 = 0.153, &41 = 0.072, &51 = —0.401

In considering the analysis of [;, , the estimated parameter &,, is the estimated
A effect; and its negative is the B effect; the effect of the first four litter sizes are
estimated by Q@ , @s0 , &40 , @50 and the sixth litter size Qs , which is not shown,
is the negative of the sum of the &.¢’s; ¢ = 2, 3, 4, 5.

The sum of squares of deviation from the model, 3.1269, represents the test
statistic for no interaction; it agrees with the result of Berkson [1968] who
found 3.128. The two results should be identical except for rounding error.
This error sum of squares can be interpreted as a test for no interaction or it can
be interpreted as a test of goodness-of-fit of a multivariate additive model in
the logarithms, having treatments and litter size as its parameters. If the
latter interpretation is adopted, it is reasonable to proceed to test hypotheses
about litter sizes and treatment.

The test for no effect of treatment on I; and I;, simultaneously is produced by

c =P1000000000ﬂ
> 000000010000

and yields X* = 6.41 with 2 p.r. which is significant at less than the 0.05 level.
To test the effect of the litter size on I;, and I;, simultaneously we choose

[001000000000]
000100000000
000010000000
000001000000
2 1000000001000
000000000100
000000000010
00000000000 1

which yields X* = 75.32 with 8 p.r.

More specific hypotheses can be tested. For example, the linear effect of
litter size is easily found under the assumption of equal spacing. Then we want
to test

—20; — oy + Oay + a5 + 205 = 0
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for ;o and I;; simultaneously. «; was estimated by —&, — & — & — &s;
substituting for as we get

—4day, — 303 — 204 — a5 = 0.
This test is produced by choosing
C=[004321000000J’
000000004321

which yields X* = 67.70 with 2 p.r. The same hypothesis can be tested for
l;0 and I;, separately. In this case we get X* = 59.17 and X* = 4.674, respec-
tively, each having one p.F. By similar argument the test for quadratic effect
of litter size is produced by

C=[000343000000J

000000000343

yielding X* = 5.282 with two p.F. which does not quite reach the 0.05 level.

From this analysis we can infer the following: a transformation of the
observed proportions p;;, ¢ =1, ---,10; j = 0,1,2 by In (p;o/p:2) and
In (p;1/pi2) produces a scale on which an additive model containing the effects of
litter sizes and treatments produces an adequate fit to data as demonstrated by
the lack of significant deviation from the model, i.e., no interaction. On this
scale, treatments A and B are significantly different as are the litter sizes; and
the number of depletions varies linearly with litter sizes.

It is important to note that the results of tests involving both I, and I;, are
invariant in the sense that the same test statistics would have been produced
if I, and I;; had been defined as In (/7o) and In (7;/7:0); or in terms of some
other linear transformation of K¢ in which the same vector space is spanned.

DISCUSSION

The approach presented here relegates the analysis of categorical data to a
subclass of problems that can be handled by weighted regression. The authors
feel that this unification is worthwhile because of the simplicity with which
models and hypotheses can be formulated and tested. For many already well
acquainted with linear models, this should be a welcome simplification. Also,
the details of computing are greatly simplified. The two classes of functions,
linear and logarithmic functions of the cell probabilities, do not exhaust the
possibilities. On the other hand, many others could be handled by the same
approach.

This approach is not without its problems. The behavior of the tests in
‘small’ samples is unknown. However, the same can be said for tests based on
the maximum likelihood estimates. The occasional empty cell may require
adjustment of the data by collapsing into a smaller array or by modification of
(=) so that S is not singular. Recent work by Rao [1963] shows that the maxi-
mum likelihood estimate has a smaller variance than the BAN estimate used
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here. To counter these arguments, the numerous examples presented by
Berkson [1968] suggest that the analyst is not paying a high price for the simpli-
cities that result from adopting this simple non-iterative procedure.

This procedure has been programmed for both the IBM 1130 (8k, 16 bit
machine) and the IBM 360/75 (240k byte partition). For the 1130, the program
will handle 16 X 16 matrices and for the 360/75, 65 X 65 matrices can be
handled. The program deck and documentation for the 360/75 version are
available from: The Program Librarian, Department of Biostatistics, Uni-
versity of North Carolina, Chapel Hill, N. C. 27514.
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ANALYSE DE DONNES QUALITATIVES PAR DES MODELES LINEAIRES
RESUME

Supposons qu’il y aitn; ¢ = 1,2, - - -, s, échantillons de s distributions multinomiales chacune
ayant r classes de réponses. Définissons alors u fonctions des probabilités vraies par cellule
(inconnues) (w0 ¢ = 1,2, «++,8;7 = 1,2, «-+, 7, 00 Z;_l mi; = 1) qui aient des dérivées
jusqu’au second ordre par rapport & ;; et pour lesquelles la matrice des dérivées premiéres
soit de rang u.

Un procédé général non itératif est décrit pour ajuster ces fonctions & un modéle linéaire,
pour tester la qualité d’ajustement de ce modéle et pour tester des hypothéses concernant les
paramétres du modeéle linéaire.

Les cas particuliers des fonctions linéaires et des fonctions logarithmiques des m¢; sont
développées de fagon détaillée et quelques exemples de la fagon dont cette approche générale
peut étre utilisée pour analyser différents types de données qualitatives sont présentées.
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