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Abstract —Cardiac muscle is a highly nonlinear active medium which may undergo rotating vortices
of electrical activity. We have studied vortex dynamics using a detailed mathematical model of
cardiac muscle based on the Beeler—Reuter equations. Specifically, we have investigated the
dependence of vortex dynamics on parameters of the excitable cardiac cell membrane in a
homogeneous isotropic medium. The results demonstrate that there is a transition from the vortex
with circular core that is typical of most excitable media, including the Belousov—Zhabotinsky
reaction, to a vortex with linear core that has been observed in heart muscle during so-called
reentrant arrhythmias. The transition is not direct but goes through the well-known sequence of
nonstationary quasiperiodic rotating vortices. In the parameter space there are domains of different
types of vortex dynamics. Such domains include regions where: (1) vortices can not be generated,
(2) vortices occur readily, and (3) vortices arise but have a short lifetime. The results provide
testable predictions about dynamics associated with initiation, maintenance and termination of
cardiac arrhythmias.

1. INTRODUCTION

Cardiac muscle contracts periodically about once per second. Every contraction is initiated
by an electrochemical wave that spreads at about 0.5 ms™'. When the wave reaches a cell,
its membrane potential jumps by 100 mV over approximately 2-3 ms and slowly returns to
the resting state over several hundred ms (see Fig. 1). The cardiac wave is a strongly
nonlinear wave whose amplitude and shape do not change during propagation. In this
respect, it resembles a soliton, although the mechanisms of its propagation are quite
different from those of the soliton which spreads without decay only in one-dimensional
media. In contrast, the electrochemical wave in the heart does not decay even in two or
three dimensions. Moreover, as any other wave, the electrochemical wave in the heart can
diffract according to Huyghens' principle. However, its behavior is somewhat similar to
that of particles in that two colliding waves annihilate each other. In this respect also, the
cardiac wave is extremely different from colliding solitons, which can penetrate one
another.

The simplest equation describing a wave with the foregoing properties can be written in
the form of a reaction—diffusion equation:

dU/dr = DAU + f(U),

where DAU is the diffusion term and f(U) is a nonlinear function (often of a special type,
used by van der Pol [26] for description of electrical impulse generator). For scalar U, this
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Fig. 1. Action potential of the cardiac muscle. Bold line corresponds to normal cardiac tissue. Thin lines
correspond to various levels of suppression of conductance g; (in mScm™2) for slow (Ca) current. Calculation of
BR equations using normal values of other parameters.

equation is called the KPPF equation [15, 35]. On the other hand, when U is a two-
component vector and function f is a cubic, the above equation is called the FitzHugh-
Nagumo (FHN) equation. However, natural excitable media should be described by more
complex equations. For example, in the case of the Hodgkin and Huxley model [12] of
nerve fiber, vector U contains 4 components; in the Beeler and Reuter model [4] of the
heart muscle, vector U consists of 8 components describing various ionic currents and
membrane voltage. In two-dimensional space, all these equations have interesting solutions
in the form of rotating vortices (spiral waves). Such vortices underlie various phenomena in
natural excitable media; for instance, they are involved in the control of morphogenesis in
colonies of the social amoebae Dictyostelium discoideum, promoting species’ survival [10].
In the heart, rotating vortices are a major cause of life-threatening rhythm disturbances
such as tachycardia and fibrillation.

Rotating spiral waves were predicted to be a mechanism of a cardiac arrhythmias by
Wiener and Rosenblueth [27]. Later, the hypothesis was brilliantly confirmed by the
experiments of Allessie et al. [2] in cardiac tissue. Moreover, over the years, spiral waves
have been shown to be a basic feature of excitable media of diverse nature; for example,
vortex waves of electrochemical activity may develop when an iron grid is immersed in
nitric acid [25]; rotating waves of concentration may develop also in the chemical reaction
known as the Belousov—Zhabotinsky (BZ) reaction [5, 30, 31]; spiral waves of spreading
depression have been demonstrated in the retina of birds [11]; and spiral calcium waves
have been found in the cytosol of Xenopus cocytes [17].

Vortices in heart muscle differ from well-studied vortices in the BZ chemical reaction
and from those obtained in numerical simulations of cardiac tissue in that they display
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essentially distinct dynamics. Indeed, in the majority of computational and chemical
experiments, the tip of a spiral wave rotates around a stationary or moving center (core)
that is almost circular in shape (Fig. 2(A)). In contrast, in myocardium, the tip of
the vortex traces a trajectory that consists of a straight-line segment and sharp turns
(Fig. 2(C)).

What causes such a qualitative difference? In cardiology, it is common to consider the
anisotropy of myocardium to be the main mechanism because myocardium consists of
elongated cells oriented end to end, and the velocity of wave propagation along cells is
about 3 times greater than across cells [24]. Whether the shape of the vortex core in the
heart is a consequence of its anatomical specificity or a generic property of highly nonlinear
autowave media is still in question. Vortices with stable linearly shaped cores similar to
those observed in cardiac muscle were found in the FitzZHugh-Nagumo equation [16]. We
have now extended our observations of core dynamics using a mathematical model of
isotropic and homogeneous cardiac muscle. The main purpose of the present study was to
use the BR equations [4] to investigate: (i} shapes of vortex cores; (ii) bifurcations from
circular to linear vortex cores; and (iii) parameters that can affect formation, dynamics, and
termination of rotating vortices.

2. MODEL AND PROCEDURE USED IN NUMERICAL EXPERIMENTS

Numerical experiments were performed using the BR model which consists of 8
differential equations (1-3). Equation (1) describes the membrane potential V:
dv 1,. . . . .
— = DAV - —(lkl + In + INa t ica — lext)’ (1)
dt C
where C = membrane capacitance, V = membrane potential, i,; = time-independent potas-
sium outward current, i,; = time-activated outward current, iy, = initial fast inward current
carried primarily by sodium ions, {; = secondary or slow inward current carried mainly by
calcium ions.
The time derivative of calcium ion concentration, [Ca], is given by the equation:

S

Fig. 2. Rotating vortex in cardiac muscle and mathematical models. (A) Vortex in numerical experiments using
the simplest (FitzZHugh-Nagumo) model of excitable media. Thin lines represent consecutive positions of the
activation front. Bold circle in the center is the core of the vortex (a trajectory of the front break). An arrow
indicates the direction of rotation. (Adapted from Zykov [33] by permission). (B) Vortex in numerical
experiments on a modified BR model of ventricular myocardium. Wavefronts are depicted at intervals of 0.04 s
(from Winfree [30] by permission). (C) Activation map of spiral wave activity in a thin slice of isolated ventricular
cardiac muscle (from Davidenko er al. [8], by permission). The fronts were recorded every 16.6 ms. The mapping
was carried out using a potentiometric dye probe and video imaging with a spatial resolution of 500 um after
filtering. The bold line indicates the vortex core in this case. Clearly, the core in the heart muscle differs
qualitatively from that in the mathematical models shown in (A) and (B): the point of wavefront break moves
along a line in cardiac tissue, and along a circle in both mathematical models.
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d[Ca]
dr

The dependence of the membrane current on time, the membrane potential and the
parameters of activation and inactivation are described in the Appendix. The time
derivatives of these parameters, x,, m, n, j, d, and f, are given by the equation:

dy, (Y, -Y)
dr T; |

Y, and 7; are defined in the Appendix (Y, is replaced by the corresponding activation or
inactivation parameter).

The following modifications were made in an effort to speed up the calculations and
reduce the computational cost of using the BR:

(1) The sodium activation parameter (i.e. variable m in equation (3)) was reduced to the
steady state; it was then stored as a function of V (from —100 mV to 50 mV) with steps of
1 mV, and linearly interpolated during calculations.

(2) Since the original model includes a large number of exponents and a logarithm (see
Appendix, equations (A.1, A4, A5 and A.3)) that take much time for calculation, we
used a standard procedure that allows their tabulation as functions of V; we used the same
voltage range and voltage step as for variable m, and linearly interpolated the data in the
process of calculation. The error thus introduced was less than 1%.

Experiments were performed using a matrix of 100 X 100 elements. Integration was
carried out using the Euler method in cartesian coordinates; Neumann boundary conditions
(3E/3n =0) were used. In some simulations, a 300 x 300 grid was used with standard
parameters in order to test the accuracy of the calculations of the linear core vortex. The
space step Ax = 0.25 mm and the time step A7 = 0.1 ms. Errors in the velocity, amplitude
and duration of the action potential were determined by comparing the membrane
potential response of a modified unidimensional model to stimulation with the simulta-
neously induced response of the unmodified (i.e. without reduction of the variable m)
unidimensional model. Calculations in the latter were carried out at Ax = (.01 mm and
At =0.005ms. An error of 12% resulted from the different Ax and A, as well as from
the reduction of the variable m to its steady-state value.

The tnitial conditions were similar to those used commonly to obtain a plane excitation
wave with broken wavefront [33]. The spatial distribution of iy, was used to determine the
position of the wavefront and vortex tip by constructing a binary array from the array of i
with a threshold of 0.05 uAcm 2. The picture thus obtained corresponded to a long line
whose thickness was 2-4 pixels. The line was parametrically described and its tip was
found.

= —1077i, + 0.07(1077 — [Ca]). 2

()

3. RESULTS OF NUMERICAL EXPERIMENTS

3.1. Two kinds of vortices in the BR model

Cardiac muscle undergoes highly relaxational pulses of electrical activity; the character-
istic risetime of the wavefront is about 2-3 ms and that of the plateau is roughly 100 times
larger (see Fig. 1, bold line). Numerical simulation of such highly relaxational media is
time-consuming even when using a supercomputer, and requires special computational
methods. Thus, in their calculations, researchers usually have to use parameter values that
make the equations less complicated. These parameter values cause the so-called ‘good’
vortices (i.e. with almost circular cores, see Fig. 2(A)) that are usually observed in the BZ
reaction, as well as in populations of social amoeba Dyctiostelium discoideurn. An example
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of the vortex calculated using the modified BR model is shown in Fig. 3. The appearance
of the vortex varies depending on which variable is displayed: membrane potential in panel
A, calcium concentration in panel B and sodium current in panel C. Note, for example,
that the sodium current is restricted to a narrow band at the very front of the excitation
wave. Yet, regardless of the display, the vortex is always a ‘good’ one, because its circular
core is typical of that of many excitable nonlinear media that are not too stiff. But
such vortices are not typical for cardiac muscle, in which the core is not circular at all
(see Fig. 2(C)).

Linear-type vortex cores may be demonstrated in the BR model when parameters
corresponding to the normal myocardium {4] are used. In Fig. 4 we show a linear core
obtained during 5 rotations of the vortex with steps Ax =0.5mm and At =0.5ms; the
core shape was re-checked for two rotations with steps Ax =0.25 mm and A¢=0.1 ms.
Suppression of ionic conductances gn, and g, resulted in decreased stiffness (see Fig. 1),
and in a transition from linear to circular core, but the type of vortex obtained did not
depend on the initial conditions (for further details see Krinsky et al. [16]).

C/

;X. B C

Fig.3. A vortex in the BR model of myocardium. (A) membrane potential distribution, isolevels from —80.0 to

0.0 mV with 10mV step. (B) intercellular calcium concentration distribution, isolevels from 0.1 x 1077 to

20.0 x 10~7 Imole~! with 0.2 X 10~7 Imole~! step. (C) fast inward (sodium) current distribution, isolevels 0.05 and

0.6 uAcm~2, Calculation on a mesh of 100 x 100 elements, steps Ax =0.25mm, At=0.1ms. Parameter
gna =22 mSem 2, g =0.045 mSem~2 (half of normal value of maximum conductances).

20 mm

Fig. 4. Vortex tip trajectory in the BR model (gn, = 4.0 mScm~2, g = 0.09 mS cm~2). Simulation using a mesh of
200 x 200 elements with steps Ax = 0.5mm, At =0.5ms. Here the trajectory is qualitatively similar to that of
the cardiac muscle (Fig. 2(C)).
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3.2. Types of vortex circulation in the BR model

As illustrated in Fig. 5, variation of parameters led to a transition from circular to linear
cores. Indeed, when gy, is changed from 2.1 to 2.2, the stiffness of the equation is slightly
increased. Under these conditions, the circular rotations become unstable, and the
trajectory of the tip begins to resemble an epicycloid. It then becomes similar to a cycloid
(gna =2.3), and a hypocycloid (gn, = 2.5). Finally, when gy, is increased to 4.0, the
trajectory becomes linear such as that observed in cardiac muscle (see Fig. 2(C)).

The type of symmetry-breaking shown in Fig. 5 is well known to occur in simpler models
of excitable media. The transition from periodic circular motion to quasiperiodic two-
frequency motion is shown to be a Hopf bifurcation [3]. Cycloidal-like circulation was
described by Zykov [32] and by Lugosi [18] for the FitzHugh—Nagumo model; by Fast
et al. [9] for a cellular automata model; by Jahnke er al. [13], and Jahnke and Winfree [14]
for the Oregonator model, as well as by Agladze [1] and by Skinner and Swinney [23] for
the BZ reaction.

The parameter space g, — gn, contains areas with various types of spiral wave circulation
(and tip trajectories), as illustrated in Fig. 6. Four types are shown: circular (area A),
epicycloidal (area B), cycloidal (line C), and hypocycloidal (area D). Since calculations in
the parameter range corresponding to the linear vortex cores consume much computer
time, they were performed only for several points (gn, = 3.5, 4.0, 5.0, 6.0, mScm™ and
standard g, = 0.09 mScm™?); thus, the area in parameter space corresponding to the linear
cores was not determined.

3.3. Qualitative analysis of the vortex circulation pattern

A kinematic theory describing the dependence of the circulation radius on the para-
meters of the medium was proposed by Zykov er al. A model of cycloidal circulation was
developed in ref. [33] and in ref. [18]. However physical mechanisms have not yet been
proposed for the transitions from circular to epicycloidal, then to cycloidal, hypocycloidal,
and linear-type trajectories.

Let us consider qualitatively the mechanism of these changes. For discussion purposes,
we shall use the term curvature to describe the trajectory of the vortex tip motion rather

g =2. lmS/cm 2.2 2.3

@@%wg

0

Fig. 5. Transition from circular to quasilinear vortex core. Maximum sodium conductance gy, is indicated on top.
Parameter g, = 0.09 mScm™2 was used for the rightmost picture, and g, = 0.045 mScem~2 was used elsewhere.
Simulation using a mesh of 150 x 150 elements.
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Fig. 6. Types of tip trajectories in parameter space {gn, and g,}. (A) region of circular shape. (B) region of

epicycloidal shape. (C) border line of cycloidal shape. (D) region of hypocycloidal shape. Simulation was done

using a mesh of 150 X 150 elements with steps Ax X 0.25mm, Az =0.1 ms, All the depicted trajectories were
calculated with fixed g, = 0.045 mS em~2 and varied gy,-

than to indicate the shape of the wavefront. In area (A) of Fig. 6, the curvature of the
trajectory associated with circular movement is positive and fixed. In area (B), the
trajectory of the vortex tip consists of small loops and large arcs. When parameter gy, is
increased, the relative position of the loops and arcs varies and the trajectory becomes
straight (line (C)); subsequently, as gy, is further increased, the trajectory closes (area (D))
but the direction of the loops and arcs is opposite to that in (B). The curvature of
the trajectory of the epicycloid (Fig. 6(B)) is everywhere positive; in the hypocycloid
(Fig. 6(D)), however, the negative curvature predominates. The cycloid (Fig. 6(C)) is
intermediate in that curvature is positve almost everywhere except at the inflection point,
where it is zero. The curvature along the trajectories is displayed in Fig. 7 for all such
cases. It may be observed that the curvature changes periodically for all cycloidal-type
trajectories. Thus, the question of origin of cycloidal-type trajectories can be reduced to the
origin of periodical changes in the curvature. We will show that: (1) for all types of cycloids
there is a periodic motion whereby each wave first approaches and then lags behind the
preceding wave, which results in periodic modulation of the excitability and, as a
consequence, the curvature; (2) for circular trajectories each wave moves at a constant
distance from the preceding wave, which maintains both excitability and curvature fixed.

It is well known that decreasing the excitability (i.e. increasing the excitation threshold)
results in a decrease in the wavefront critical curvature, as well as in transitions from
positive to negative critical curvature values. However, the analogy is misleading since it
concerns the curvature of the wavefront rather than the trajectory of the wavebreak
trajectory. To understand the transitions between trajectory types it is useful to think in
terms of wavebreak evolution. Figure 8 shows three different types. In panel (B), the
propagating broken wavefront does not change its length (the break point moves normally
to the front). In panel (C), the wavefront propagates in a medium with decreased
excitability (increased excitation threshold) and, as a result, the broken wavefront shortens
during propagation. In Fig. 8(A) the wavefront propagates in a medium with increased
excitability (decreased excitation threshold) and lengthens. It is clear that the curvature is
zero in panel (B) (the wavebreak moves along a straight line), positive in panel (A) and
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Fig. 7. Vortex wavebreak trajectory curvature vs its length. Circle gn,=2.1mScm=%; epicycloid
gna = 2.2mScem~2; cycloid gy, = 2.3 mScem™2; hypocycloid gy, = 2.5 mScm™2. A mesh of 150 x 150 elements was

used for the simulation. For all the trajectories, g = 0.045 mScm™2.

i

Fig. 8. Various regimes of wavebreak propagation in BR model: (A) wavefront lengthens (gn, =2.1 mScm=2).
(B) wavefront does not change its length (gx, = 2.0 mScm~2). (C) wavefront shortens (gn, = 1.9 mScm™2). A
mesh of 100 % 100 elements was used with steps Ax = 0.25 mm, At = 0.1 ms. Parameter g, = 0.03 mSem—2,

A B C

negative in panel (C). Thus the mechanism of the cycloidal types of trajectories of Fig. 5
can be explained quite simply as follows: the periodic approaching and lagging of the
wavefront in relation to the preceding wave causes a periodic modulation of the excitability
and the curvature, which gives rise to the cycloids. Which type of cycloidal curve
(epicycloid, hypocycloid or cycloid) will be observed depends on how close each wavetront
comes to the preceding wave and thus on how deeply the excitability is depressed.

Numerical proof for the above statement is presented in Fig. 9. In the top panel, the
variations in threshold associated with changes in the position of the wavebreak along a
hypocycloid are depicted as changes in the thickness of the curve. The threshold values
were estimated according to the data plotted in the lower panel, which shows the time
course of threshold and calcium concentration during a single action potential in a BR cell.
Clearly, threshold increases when the wavebreak traces a big arc of the hypocycloid
because it propagates close to the preceding wave; threshold decreases when the wave-
break outlines a highly curved loop of a hypocycloid because it propagates far from the
preceding wave.
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Fig. 9. (a) Threshold of excitation along hypocycloidal vortex tip trajectory. The threshold was estimated from the

calcium concentration (using panel (B) for construction of calibration curve). Calculation on a mesh of 150 x 150

elements. Parameters g, = 0.045 mScm=2, gy, =2.5mScem~2, (b) Threshold of excitation (dotted) and calcium
concentration (solid) during action potential.

3.4. Detailed description of the trajectory

As shown in Fig. 10, three characteristics can be used to describe a cycloid: the radius r,
of the loop, the distance /, between neighboring loops and the angle ¢ formed by three
successive loops. Angle ¢ is greater than 180° for the epicycloid; it is equal to 180° for the
cycloid; and less than 180° for the hypocycloid. Moreover, from calculations similar to
those shown in Figs 5 and 11, one can see that r, decreases if gy, is increased (Fig. 5); r,
does not depend on g, (Fig. 11); the distance between loops [, increases if gy, or g, are
increased (Fig. 11); angle ¢ decreases if gy, is increased (see Fig. 5), and ¢ does not
depend on g, (Fig. 11). Let us now describe the physical mechanisms underlying these
dependencies. It is convenient to do this by using physical notions of relaxation time and
threshold of excitation. In electrophysiology the term refractoriness is used instead of
relaxation time, and the term excitability is used as the inverse of threshold of excitation
(an increase of threshold is equivalent to a decrease of excitability). It is well known that
relaxation time is governed by calcium channel conductance g, (i.e. an increase in g, leads
to an increase in relaxation time) and depends little on gy,. On the other hand, threshold
of excitation is governed by sodium channel conductance gy, (i.e. a decrease in gy, leads
to a decrease in excitability), but does not depend on gy,.

The radius r, of the loop decreases when gy, is increased because, when the excitability
increases, the curvature of the wavebreak trajectory also increases (see Section 3.3). The

(a) Fe (b)

Fig. 10. Geometrical characteristics of vortex tip trajectories with a hypocycloid (a) and an epicycloid (b) as

examples: ry =radius of turn in the unexcited medium (loop radius), [, = distance between loops, @ = angle

between loops, AB = an ark with large radius, BC = an ark with small radius, CD = an ark with negative
curvature.
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Fig. 11. The transition from circular to cycloidal circulation induced by increase in maximum calcium conductance
gs- Parameter gy, is fixed (2.2 mScm~32).

distance between loops /, increases if either gy, or g, is increased (Fig. 11). There are two
reasons for this: firstly, an increase of g, leads to an increase in refractoriness and,
consequently, to an increase in the length of the segment of trajectory that is situated
within the refractory region; secondly, when gy, increases r, decreases; as a result after
undergoing a loop, the wavebreak appears early within the refractory phase, which further
increases the length of the segment of trajectory that is located within that phase.

4. DISCUSSION

The Beeler and Reuter equations simulate cardiac electrical activity in a similar manner
to that in which the equations used by Hodgkin and Huxley simulate the action potential of
the squid giant axon. The approach is based on measurements of local properties by means
of voltage and space-clamp experiments, and the description of the distributed system is
made on the basis of physical principles by the addition of the diffusion term. Of course, it
was necessary to carry out experiments to check the validity of the partial differential
equations. In the case of the Hodgkin and Huxley equations, one-dimensional experiments
with measurements of pulse-propagation velocity were sufficient. On the other hand,
predictions derived from any extended model of cardiac muscle require biological experi-
ments in two or three dimensions. To our knowledge, comparison between results of
simulations using the BR equations and those of experiments in two-dimensional cardiac
muscle has not been made to date. This is the first demonstration that, under the
appropriate circumstances, the BR equations may result in vortices with stable linear cores,
which are typical of those in cardiac muscle.

Vortices with linear cores were found initially in the classical formulation of Wiener and
Rosenblueth [27, 36, 37, 38]. Later, experimental findings in an active chemical medium
(summarized in ref. [31] see also [27, 36, 37, 38]) confirmed all major results obtained
earlier with the automata model of Wiener and Rosenblueth, with one important
exception: the form of the vortex core; in the chemical medium the wave rigidly rotated
around a circle instead of moving around a line. Subsequent numerical simulations using
partial differential equations [40] yielded similar results. Since then, all calculations that
have been published (see review by Winfree [39]) have confirmed the previous results and
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many new beautiful examples of rotating vortices have been presented (see, for example,
refs [17, 21]). In most cases, however, the core of the vortex is circular in shape. Recent
refinements have led to the discovery of unstationary wave rotations in simulations [32, 3]
and experiments using active chemical media [28, 13]. During such unstationary circulation,
elongated trajectories have been observed in both computer simulations [7] and in
experiments using the chemical active medium [19]. Yet, vortices resembling those
described originally by Wiener and Rosenblueth’s model have been found in cardiac muscle
only. It is important to remember, however, that cardiac muscle is a highly anisotropic,
discrete excitable medium which, as a result of spatial scaling, may give rise to vortices
with elongated cores. In addition, experimental approaches used in the past to record
rotating vortices in cardiac muscle by means of multiple-electrode mapping systems did not
have the appropriate space resolution to enable the visualization of vortex cores. The
recent introduction of optical mapping and video imaging technology to the study of
vortex-like activity [8] has provided a direct means of directly addressing these issues [16].
Thus, it is now clear that:

(i) Linear cores are not an artifact of the automata model but real phenomena which
may appear in continuous homogeneous media. Whether or not a linear core will be
observed, will depend on the ratio of the two characteristic scales —the wavelength A and
the minimal radius r of the wavefront curvature. If r > A, the usual circular core is
observed, for r << A, a linear core will arise.

(ii) Elongated trajectories observed during unstable circulation are in fact transitions
from circular to elongated cores.

(iii) To observe the transition from elongated to less elongated core in cardiac muscle, it
would be necessary to increase the dimensionless value r/A which, as shown in the present
paper, may be achieved by decreasing the Na* and Ca?* conductances.

The simulation of excitation waves in the Beeler and Reuter model with reduced sodium
current, mimics the effects of certain antiarrhythmic drugs, and the results presented
here provide a plausible mechanism for some of the beneficial actions of such drugs.

25 r
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Fig. 12. Minimum size of the medium in which vortex can subsist indefinitely as a function of maximum sodium
conductance (gna) at fixed g, =0.045mSem=2. When gn, =2.3mScm™2, the critical size goes to infinity (the
trajectory becomes cycloidal).
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By reducing the excitability, the drug may convert a linear core of a vortex into a cycloid
(Fig. 5). Under these conditions, the vortex tip would move close to a boundary of the
medium (e.g. an artery or a scar) and the rotating activity would vanish. The results may
help also to explain the concept of minimal (critical) size of heart muscle in which
vortex-like activity can be sustained. As shown in Fig. 12, at gy, = 2.3 mScm™? the critical
size becomes infinite; i.e. the vortex cannot exist a sufficiently long time in a bounded
medium. This result suggests that an appropriate dose of an antiarrhythmic drug may

benefit the patient, whereas a slightly different dose may not. For instance, when the

conductance changes from the normal value of gy, =4.0mScm™ to gy, =2.5mS cm ™2,

the effect will be weak and the arrhythmia would not disappear. The critical size grows
remarkably only at gy, =2.310 mScm™2. Under these conditions, the vortex-like activity
would be terminated and the antiarrhythmic therapy would be a success. Overdosing
(gna <2.2mScm™?) would reduce the critical size and the antiarrhythmic effect would
again disappear.

The present work shows that, despite its remarkable complexity (8 equations), the Beeler
and Reuter model is not a monster among differential equations describing simple excitable
media. It describes the generic features of vortex dynamical behavior in the heart muscle.
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APPENDIX

Equations for the currents in Beeler—Reuter model

Dimensionless variables — x;, m, h. j, d. and f describing the activation and inactivation of ionic currents are
included in the equations as follows:

1. Time-activated outward current with the activation parameter — x;:
00UV +T7) _ |

Iy, = x,0.8 S0-04(V+35) (A1)

2. Initial fast inward current, carried primarily by sodium ions with the parameters of activation (m) and
inactivation (4. j)

iNa = (gNam3h,j + gNuC)(V - ENH,) (Az)
where g, = 4.0 mSem=2, gnae = 0.003 mSem™2, Ex, =50 mV.

Secondary or slow inward current, carried mainly (but not completely) by calcium ions with the parameters of
activation and inactivation d and f, respectively:

is = gsdf(V — Eg), (A.3)
where gg = 0.09 mScem=2, £5= —82.3-13.0287 In[Cal.




526 I. R. EFIMOV et al.

The time-independent potassium-outward current is determined by the potential:

0.04(V +85) _ vV +
ix, = 0.35{4 e L 102 23 } (A4)
e0.08(V+53) 4 @0.04(V+53) 1 — e 004V+23)
Parameters y; and t; are determined in terms of the rate constants:
_ ai
AR ! e T2 (A.5)
(a; + B) (a; + Bi)

where

H(V+Cy) Vv
= O GV CY) (A6)
eCV+C) + (s

The values of coefficients C; are given in Table Al.

The model was extended to incorporate diffusion with respect to the potential with the coefficient D = /2RC,
where a is the cell radius (2.5-12.5 um), R = specific axial resistivity (200 Qcm), C = specific membrane
capacitance (1 uF cm—2) [22]. For calculation, we took the diffusion coefficient to be D = 0.1 mm?ms~!.

In the equations, currents (i) are measured in uA cm~2 voltage (E, V, Ey,) in mV, time (¢, 7;) are in ms, rate
constant (a;, ;) are in ms~!, conductances (gs. gna, gNac) are in m§cm~2, [Ca); is in mole™1.

Table Al.
C C, Cy Cy Cs Cs C;
(ms)~! (mV)~! (mV) (mV ms)~! (mV) (mV)~!

o, 0.0005 0.083 50 0 0 0.057 1
B, 0.0013 —0.06 20 0 0 -0.04 1
@ 0 0 47 -1 47 ~0.1 -1
B 40 —0.056 72 0 0 0 0
ay, 0.126 -0.25 77 0 0 0 0
B 1.7 0 22.5 0 0 —0.082 1
@; 0.055 -0.25 78 0 0 -0.2 1
B, 0.3 0 2 0 0 ~0.1 1
g4 0.095 —-0.01 =5 0 0 —-0.072 1
Ba 0.07 -0.017 44 0 0 0.05 1
o5 0.012 —0.008 28 0 0 0.15 1
f 0.0065 -0.02 30 0 0 -0.2 1




