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Insect navigation relies on path integration, a procedure by
which information about compass bearings pursued and
distances travelled are combined to calculate position. Three
neural levels of the polarization compass, which uses the
polarization of skylight as a reference, have been analyzed in
orthopteran insects. A group of dorsally directed, highly
specialized ommatidia serve as polarization sensors. Polarization-
opponent neurons in the optic lobe condition the polarization
signal by removing unreliable and irrelevant components of the
celestial stimulus. Neurons found in the central complex of the
brain possibly represent elements of the compass output. The
odometer for measuring travelling distances in honeybees relies
on optic flow experienced during flight, whereas desert ants
most probably use proprioreceptive cues.
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Introduction
Social insects, such as honeybees and desert ants, are
known for their exquisite homing abilities [1–3]. To find
their way during foraging excursions that lead them
through an unknown or unstructured environment, they
cannot rely on landmarks but use a navigation procedure
called path integration: by constantly keeping track of
compass bearings pursued and distances travelled, the
insects are informed about their position relative to the
nest at all times. The mechanisms by which compass and
distance information are accumulated to accomplish path
integration have been reviewed recently [4–6]. This
review focuses on recent findings on the mechanisms
underlying the two measuring instruments on which path
integration relies: the compass for measuring directions,
and the odometer for measuring distances.

Apart from the sun [7] and the spectral gradients in the sky
[8], skylight polarization offers insects a useful reference
for a visual compass, which can be used for navigation
involving path integration or just for keeping a course 
during the journey. As a result of sunlight scattering in the
atmosphere, skylight is partially plane-polarized, and the
prevailing oscillation plane (e-vector orientation) is oriented

orthogonal to an imaginary straight line connecting the
observed point in the sky to the sun (Figure 1a).

Specialized detectors for polarized skylight in
the insect retina
The microvillar photoreceptors of arthropods are inherently
polarization-sensitive. This is because the visual pigment
molecules are aligned within the microvilli membrane in
such a way that plane-polarized light is maximally absorbed
when the e-vector is parallel to the microvilli axis [9–11].
However, the high microvillar polarization sensitivity (PS) is
available to the photoreceptor as a whole only when the
microvilli are well aligned along the rhabdomere (the light-
sensitive part of the receptor formed by a stack of microvilli)
and so avoid randomizing effects, and when the rhabdomere
is reasonably short and so avoids self-screening [12,13].

The detection of polarized skylight in insects is mediated
through the ommatidia of just a small part of the com-
pound eye, the dorsal rim area (DRA), which is dedicated
exclusively to this task. The ommatidia of the DRA are
specialized in ways that make them especially suitable for
polarization vision. First, as suggested by its position, the
DRA is directed upwards and mainly to the contralateral
side. Second, in each ommatidium, the photoreceptors
come in two sets that have their microvilli oriented at
about 90° to each other, that is, the receptors are tuned to
mutually orthogonal e-vectors subserving polarization-
antagonism (see below). Third, the microvilli are well
aligned along the rhabdomere and consequently the pho-
toreceptors exhibit a high PS. Fourth and finally, in many
insects, the optical properties of the ommatidia are degraded
in a way that significantly increases the visual field of 
the DRA ommatidia. Thus, the cornea can contain light-
scattering structures; the screening pigment or the tracheal
sheath, that normally shield the ommatidia from each
other, are missing or reduced; and/or there is a mismatch in
focal length. These four features were found in the DRAs
of many species from different insect orders, including
odonates, orthopterans, coleopterans, hymenopterans, 
lepidopterans and dipterans (for a typical example of a
DRA see Figures 1b and 2a) [14•,15,16]. In the regular
ommatidia of most insect eyes (ommatidia that do not
belong to the DRA), PS is comparatively weak, because of
misalignment of the microvilli [13,17,18]. In the honeybee
eye, PS is almost completely lost, because the ommatidia
are twisted by 180° [12,19]. This is probably because it
avoids the perception of false colors when the bee views
shiny, and thus partially polarizing, objects [20].

An interesting parallel to the insect DRA has developed in
the simple lens eyes of spiders. In lycosid spiders, the 
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ventral-most, skywards-directed part of the principal eyes
contains two types of photoreceptor with mutually orthogonal
microvilli, and the receptors lack screening pigment. The
gnaphosid spider Drassodes devotes at least one full pair of
secondary eyes to polarization vision. Of these, the dorsally
directed, posterio-median eyes lack a refracting lens. Each
eye is dominated by photoreceptors with the same
microvilli orientation, but because the two eyes are oriented
orthogonal to each other, in combination they exhibit the
familiar pattern of mutually orthogonal microvilli orientation.
A speciality of this polarization detector is a tapetum
underlying the receptor layer that boosts PS by acting as a
reflecting polarizer (Figure 3; [21••,22•]).

In summary, arthropod polarization detector organs consist
of specialized dorsally directed, strongly polarization-sensitive
photoreceptors, often with large visual fields. A special
characteristic is the presence of two populations of receptors
that are tuned to 90° different e-vectors.

Polarization-sensitive neurons:
the orthopteran case
How are signals from the polarization-sensitive photo-
receptors evaluated to inform the insect about its compass
bearing? Although most behavioral studies on the polarization
compass have been performed in bees and ants [2,8,23], for
technical reasons most electrophysiological data are from
orthopteran insects.

POL-neurons in the cricket optic lobe: signal conditioning
In the cricket optic lobe, several morphological types of
polarization-sensitive neurons (POL-neurons) have been
recorded. Although they seem to have similar physiological
properties, only one of them could be studied in detail
[24•]. The POL1-neurons are commissural neurons with
dendritic arborizations in the ipsilateral dorsal medulla and
axonal projections to the contralateral medulla [24•,25].
Spiking activity is a sinusoidal function of e-vector orientation
with alternating parts of excitation and inhibition and 
with the maxima and minima separated by 90° (Figure 1c).
Thus, these neurons have a polarization-opponent charac-
teristic, receiving antagonistic input from two analyzer
channels with orthogonal orientations of maximal sensitivity
[26]. The two analyzer channels are represented by the
two sets of photoreceptors with mutually orthogonal
microvilli present in each DRA ommatidium (Figure 1b).
The polarization-antagonism has two important effects: it
enhances e-vector contrast, which allows the neurons to
respond to very low degrees of polarization (Figure 1c;
[27]); and it makes the system insensitive to the variations
of absolute light level [25], that is, the neurons act as 
differential polarization detectors.

The visual fields of POL1-neurons are directed about 25°
contralaterally to the upper part of the sky and are very
wide (>60°). This is the result of both optical integration
by the large-field DRA photoreceptors (acceptance angle
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(a) Three-dimensional representation of the celestial polarization
pattern for 24° elevation of the sun (yellow circle). The bars indicate
e-vector orientations as observed from the center of the celestial
hemisphere. Length and width of bars indicate the degree of
polarization. The violet shading represents the visual fields of
POL1-neurones in the optic lobe of field crickets Gryllus campestris.
The violet areas outline roughly that part of the visual field defined by at
least 25% sensitivity compared with the visual field center.
(b) Comparison between specialized ommatidia of the DRA and
regular ommatidia in the adjacent dorsal area (DA) of the compound
eye of the field cricket. Left: Scanning electron micrograph of the

dorsal-most part of the compound eye, showing strongly reduced
faceting in the cornea of the DRA. Right: Schematic representations of
cross-sections through ommatidia of the DRA and the DA. DRA
retinulae lack screening pigment, and the enlarged rhabdoms have a
characteristic triangular or trapezoidal shape with strictly orthogonal
microvilli. (c) Response of an optic lobe POL-neuron of the field cricket
to the e-vector orientation of polarized light. Although the stimulus has
a comparatively low degree of polarization of 19%, the neuron exhibits
a strong modulation of spike frequency. Note the polarization-
opponency, that is, excitation (green shading) and inhibition (red
shading) depending on e-vector orientation. Adapted from [14• ,27,29•].



about 20°) and neural integration by the POL1-neurons,
which collect input from some 200 DRA ommatidia
[28,29•]. The e-vector to which a neuron is tuned is 
independent of the position of a polarized stimulus
[24•,29•]. This spatial integration has two important 
functions: first, by integrating over a large area of sky, the
neurons act as spatial low-pass filters and become insensitive
to disturbances of the polarization pattern by clouds or 
terrestrial objects [30]. Second, both optical and neural
integration enhance absolute sensitivity to a degree that
crickets could in principle exploit the polarization of the
moon-lit night sky [31,32].

Thus, POL-neurons in the optic lobe have important 
filtering properties that remove unreliable and irrelevant
features from the celestial stimulus; that is, they condition
the polarization signal for further processing. This enables
the system to work under vastly different light intensities,
degrees of polarization and sky visibility. There are three
types of POL1-neuron that are tuned to different e-vectors,

orientated approximately 10°, 60° and 130° relative to the
length-axis of the head (Figure 2b; [24•,29•]). Each of
them collects input from DRA ommatidia of approximately
matching orientations [29•].

POL-neurons in the locust central brain: e-vector coding?
Recordings from the central complex of the locust brain
revealed PS in certain types of tangential neurons (TL1,
TL2, TL3) and columnar neurons (CP1, CP2, CPU1)
[33,34•]. The tangential neurons project from the lateral
triangle to different layers of the lower division of the 
central body, whereas the columnar neurons connect 
individual columns of the central complex and project to
the lateral triangle. Like the optic lobe POL-neurons of
crickets, these neurons are spontaneously active and show
polarization-opponent properties. However, the central
complex neurons differ in two important aspects: the
e-vector tuning axes are not grouped in particular classes
(Figure 2c; [34•]); and some of the central complex neurons
receive bilateral input, that is, they can be stimulated
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Figure 2
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E-vector tuning of neural elements at different stages of the orthopteran
e-vector detection system. (a) Distribution and orientation of retinulae in
the DRA of a field cricket. The T symbols indicate the position and
orientation of the retinulae (compare enlarged cross-section through an
ommatidium at bottom right). About 65% of the whole length of the
DRA is shown. Note that each section of the DRA contains differently
oriented retinulae. (b) E-vector tuning in optic lobe POL-neurons of field
crickets. Histogram of e-vectors eliciting maximal spike frequency Φmax)
in 142 POL1-neurons with a zenithal stimulus. Note that there are three

types of POL1-neuron tuned to approximately 10°, 60° and 130°
relative to the length-axis of the head. Each tuning type collects input
from ommatidia of approximately matching orientations (compare (a)).
(c) E-vector tuning in central complex POL-neurons of the locust
Schistocerca gregaria. Histogram of e-vectors eliciting maximal spike
frequency (Φmax) in 51 tangential and columnar POL-neurons with a
zenithal stimulus. Note that the e-vector tuning axes are not grouped in
particular classes. Adapted from [29• ,34•] including unpublished data
from S Gebhardt and U Homberg (personal communication).



through either eye and the tuning e-vector was (with one
exception) the same for both eyes. The visual fields as
measured in some columnar neurons were >90° in diameter
[33,34•]. We shall consider the significance of central complex
POL-neurons below.

In transmitting e-vector information from the optic lobe to
the central brain, the anterior optic tubercle (AOT) seems
to serve as a relay station [35,36]. In addition, both the 
contralateral projection of the POL1-neurons and the bilateral
projection of polarization-sensitive AOT-neurons suggest
extensive bilateral exchange of information [25,36].

A neural model for a polarization compass
The signals of three differently tuned polarization-
sensitive light sensors unambiguously define the e-vector
of a stimulus [37]. Thus, by evaluating the signals of the
three tuning types of POL1-neurons, a cricket could in
principle determine the e-vector within the common 
visual fields of the neurons. Using this e-vector as a 
compass reference is difficult, however, because the visual
fields of the POL1-neurons are eccentric with respect to
the zenith and, thus, their activity depends on both solar
azimuth and elevation (Figure 1a). By pooling the responses
of corresponding tuning types of POL1-neuron of the left
and the right optic lobe, as in fact observed in the locust
central complex neurons [33,34•], the system becomes
zenith-centered, and the mean zenithal e-vector (integrated
within the visual field) is always orthogonal to the solar
azimuth (Figure 1a).

There are mathematical procedures for extracting e-vector
orientation from the pooled POL-neuron signals, some of
which were successfully used in the polarization compass
of robots [38–40]. However, these procedures did not take
into account the constraints of actual neural circuits, and
neural implementations were not proposed. In the rat
brain, a set of neurons called head direction cells was
found. Each neuron is active only when the rat’s head
points in a certain direction with respect to its cage envi-
ronment [41]. Could body orientation relative to the
celestial e-vector be mapped in a similar way in the insect
brain? We are presently testing a simple neural network
consisting of just 21 neurons that uses only well-known
neuronal operations. The input of the network consists 
of the pooled POL1-neurons, the output layer contains 
an array of narrowly tuned ‘compass neurons’ [42-45] each
representing a certain body orientation. Preliminary simu-
lations show that the network evaluates the POL-neuron
signals just as well as a mathematical algorithm. With their
large range of e-vector preferences (Figure 2c), the central
complex POL-neurons are candidates for compass neurons,
indicating different body orientations with their activity
maxima. However, their activity is not restricted to a small
e-vector range but they show the same polarization-
antagonism as the optic lobe POL-neurons.

Polarization-sensitive neurons in other insects
Although the presence of polarization-opponent neurons
was also demonstrated in the desert ant Cataglyphis, physi-
ological details are not yet available [46]. In contrast to
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Figure 3

Structure of the posterio-median eyes of the
spider Drassodes cupreus. (a)) Tangential
section through the retina of an eye, revealing
a regular rhabdomeric arrangement (light
micrograph; scale bar 15 µm). (b) Electron
micrograph of the boxed area in (a), showing
the parallel microvilli arrangement found over
the bigger part of the retina (scale bar
0.5 µm). (c) Position and orientation of the
posterio-median eyes on the dorsal
cephalothorax (in blue). Note the mutually
orthogonal orientation. (d) Schematic
representation of the canoe-shaped polarizing
tapetum and the retina, with one possible path
of light through the eye (arrow). The tapetum
polarizes light such that the prevailing e-vector
is parallel to the microvilli, which boosts
polarization sensitivity of the photoreceptors.
(a), (b) and (d) reproduced with permission
from [22•].
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orthopterans, the visual fields of DRA ommatidia are 
narrow and, owing to the strict fan-arrangement, each part
of the sky is viewed by differently oriented ommatidia, so
that a gradient of e-vector tuning directions within the
visual field of a POL-neuron is expected [46]. This might
indicate that crickets and ants use different strategies to
gain directional information from the polarization pattern.
Several types of optic lobe POL-neurons in crickets,
locusts and cockroaches exhibit arborizations in the acces-
sory medulla [24•,25,47,48], a small neuropil in the optic
lobe regarded as the circadian pacemaker in insects [49].
Two possible functions of these projections have been 
proposed: skylight polarization could assist in setting the
clock, or the clock might provide information for time 
compensation necessary for a celestial compass [48].

Measuring travelling distance: the odometer
A few years ago it became clear that for bees the primary
cue of distance estimation is self-induced optic flow.
Interestingly, flight distance is not perceived in absolute
units but as the total amount of image motion experienced
during flight time [50,51]. Forager bees communicate the
location of a nectar source to their hive mates by the 
waggle dance: the longer the duration of one waggle, the
further the indicated goal [2]. Because the extent of image
motion in the eye depends on the distance of objects
passed during flight, the calibration of waggle duration 
versus distance is variable even for one hive, that is, it is a
function of the actual visual environment [52••,53•]. In
contrast, the calibration of waggle duration versus amount
of image motion in the eye seems to be a natural constant
and independent of object density, flight speed or wind
conditions: 1 ms of waggle duration corresponds to 17.7° of
image motion in the eye [52••]. Although optic flow is a
robust distance measure for bees commuting along a 
certain route, it is of limited use for bees exploring new 
terrain with unpredictable visual conditions. In this situation,
bees might rely on conspicuous landmarks for resetting the
odometer from time to time more than they usually would
[51]. The neural basis of the optic flow meter is unknown.
It is tempting to invoke the well-known optomotor system
[54]. However, unlike the bee’s odometer, the output of
the insects’ optomotor system is critically dependent on
image speed [55].

In contrast to the situation in bees, in the ant Cataglyphis
optic flow plays a minor role in gauging distance. Although
ventral optic flow can have some influence on distance
estimation, lateral image motion plays no role in the ant’s
odometer [56,57]. Even if deprived of optic-flow information,
Cataglyphis can measure travelling distances relatively well
[56,57]. As the use of energy consumption was also ruled
out as a cue [58,59••], idiothetic cues remain as the main
source of information. The ants could either use a step
counter or monitor the output of the central pattern generator
for walking [59••]. The ants’ odometer must not only operate
on flat terrain, as usually chosen for experiments, but also
on uneven, bumpy terrain that constantly leads the ants

uphill and downhill. Under these conditions, Cataglyphis
does not measure the actual distance travelled but the
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Figure 4

Testing the odometer of the desert ant Cataglyphis fortis in the third
dimension. (a) Photograph of the uphill–downhill channel and the flat
channel used to train and test the ants. (b) Training along an
uphill–downhill path (a schematic side view is shown at the top). Ants
were trained to walk over nine hills to a food source 8.7m away and were
then tested either in a control channel with the same dimensions as the
training channel (black) or in a horizontal (flat) test channel (red). Filled
bars indicate actual walking distances in the test channels (means ± SD);
open bars indicate the corresponding ground distances (in the flat
channel, the two values are identical). The green dotted line indicates the
expected ground distance; the orange dotted line indicates the expected
walking distance. In the training control, the walking and ground
distances do not differ significantly from expectations. In the horizontal
test channel, the travelling distance was much shorter than the distances
travelled in the hilly array (orange dotted line). Rather, the walking
distance corresponded to the ground distance of the training control.
Twenty-one animals were tested in both conditions. (c) Training in a
horizontal channel (to a food source 5.2m away). The green dotted line
indicates the expectation for ground and walking distance; the orange
dotted line indicates the uphill–downhill walking distance that
corresponds to a 5.2m walking distance in the flat channel. In the hilly
test channel, the walking distance is significantly greater than in the
control but the mean ground distance is not. This experiment involved 17
animals. In conclusion, the ant’s odometer does not record the distance
actually travelled along an uphill–downhill path, but rather the horizontal
projection of that path, that is, the ground distance. Reproduced with
permission from [60]; photograph courtesy of R. Wehner.
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ground distance covered, that is, it takes the sum of the
horizontal projections of all segments of its journey
(Figure 4; [59••,60]). Because foraging Cataglyphis ants
often take different outbound and inbound paths [61], this
strategy avoids errors in distance estimation caused by 
different terrain structures. To determine ground distance,
the ants must measure the surface inclination constantly,
and the cosine values of the readings could serve as 
correction factors of the odometer output. Gravity perception,
and thus probably the measurement of slopes, is mediated
by proprioreceptors located in the joints between the ants’
body parts [60,62].

Conclusions and outlook
The task of the peripheral elements of the polarization
compass system is to provide the brain with robust e-vector
dependent signals; hence, the strong PS of DRA photo-
receptors, and the differential-polarization and spatial
integration properties of optic lobe POL-neurons. As
shown directly by electrophysiology [26,34•,46] or inferred
from behavioral [63] or histological studies [14•,15,16],
these mechanisms are powerful enough to exist not only in
all insect groups studied but also in spiders [21••,22•]. The
functional significance of central POL-neurons found so
far [34•] is less clear, because they combine properties of
peripheral POL-neurons (polarization-opponency) and the
hypothetical compass neurons (many tuning classes, bilateral
input). Clearly, this calls for further electrophysiological
analyses of central POL-neurons. Studies based on the
synthetic approach using neural networks in combination
with navigating robots [30,39,40] might assist the analysis
of the polarization compass.

Insects apparently use different sensory cues to feed their
odometer, but it remains unclear why bees and ants differ
in this respect. As the eyes of walking animals automatically
keep a constant distance to the ground, ants would be 
destined to exploit ventral optic flow; nevertheless, they use
proprioreceptive information. The ability of desert ants to
compute ground distance in hilly terrain is astonishing. It
remains to be tested whether this finding is an indication
for true three-dimensional path integration [59••].
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