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Abstract

We study several aspects of FitzHugh-Nagumo’s (FH-N) equations without diffusion. Some global
stability results as well as the boundedness of solutions are derived by using a suitably defined Lya-
punov functional. We show the existence of both supercritical and subcritical Hopf bifurcations. We
demonstrate that the number of all bifurcation diagrams is 8 but that the possible sequential occurrences
of bifurcation events is much richer. We present a numerical study of an example exhibiting a series
of various bifurcations, including subcritical Hopf bifurcations, homoclinic bifurcations and saddle-node
bifurcations of equilibria and of periodic solutions. Finally, we study periodically forced FH-N equations.
We prove that phase-locking occurs independently of the magnitude of the periodic forcing.

Keywords: FitzHugh-Nagumo, subcritical and supercritical Hopf bifurcation, homoclinic bifurcation, peri-
odic forcing



1 Introduction

We consider the FitzHugh-Nagumo (FH-N) equations without diffusion,

du

— =¢eg(u) —w+1,

dt (1.1)
dw =u—aw

dt ’

where g(u) = u(u — A)(1 —u),0 < A < 1 and a,e > 0. We remark that in the existing literature, the term
?FitzHugh-Nagumo system” has been used to refer to both the models with and without diffusion.

Although equations (1.1) have been mentioned in practically every mathematical biology book [2], [8],
[12], as well as some of their aspects have been studied in different contexts, [1, 4, 9, 10, 11] there is no
detailed treatment of their dynamics from the point of view of nonlinear dynamics theory.

Our goal in writing the present paper has been to offer a detailed analysis of the FH-N system (1.1) and
to present a theoretical proof of phase-locking of coupled FH-N oscillators.

We demonstrate that the system exhibits many of the known bifurcation types, some of which are executed
in a non-typical way.

In various cases the FH-N system possesses unstable periodic solutions, which appear via subcritical
Hopf bifurcations. (The instability is probably the reason for which such solutions were not noticed in
[8], p.164.) In other cases, supercritical Hopf bifurcations occur. The Bogdanov-Takens bifurcation [7] is
also characteristic for this system. As noted below, homoclinic bifurcations and saddle-node bifurcations of
equilibria and of periodic solutions are also exhibited by this system.

It is a common practice to represent a dynamical system by its bifurcation diagram. We show that the
possible bifurcation diagrams for the FH-N equation are 8. However, because of the possibilities of occurrence
of both supercritical and subcritical Hopf bifurcations, as well as the occurrence of homoclinic orbits of the
saddle associated with the appearance/disappearance of periodic orbits, the number of possible sequences
of bifurcation events is much larger. Thus a bifurcation diagram is not always sufficiently informative about
the system.

As evidence, we present an example which possesses a richness of bifurcation events when the parameter
I is varied. The numerical experiments with the example show a sudden disappearance of two (stable and
unstable) periodic orbits, which seems to occur simultaneously near a certain value of I. A more careful nu-
merical investigation uncovers that the stable and unstable periodic orbits appear and disappear via different
bifurcations associated with the homoclinic orbits of the saddle. The careful study of the mentioned example
shows that besides saddle-node bifurcations of equilibria and subcritical Hopf bifurcations, the FitzHugh -
Nagumo system exhibits also saddle-node bifurcations of periodic orbits and homoclinic bifurcations which
occur in a very narrow interval (of the magnitude of 10~7 of values of I). In-between, the structurally unsta-
ble homoclinic orbit of the saddle converts into a heteroclinic orbit connecting the saddle and the unstable
equilibrium which further converts back into a homoclinic orbit of the saddle.

In short, from the standpoint of a “bifurcation gems collector”, the well-known, simple-looking system
(1.1) is a treasure box which, we believe, is worthwhile opening once more.

The structure of the paper is as follows.

In Section 2 we introduce a Lyapunov functional for the system, which is of help in establishing various
useful results. We use it to state global stability results for certain sets of parameter values and to prove
the boundedness of the solutions of the system. In Section 3, we carry out the phase plane and bifurcation
analysis of the system. In Section 4 we study the case when I is not a constant. Since a system of the type
(1.1) represents an oscillator (as in many cases it possesses a limit cycle ), an interesting problem is to study
periodically forced FH-N equations. Results from [5] are used to prove the existence of periodic solutions
with the same period as the forcing term. We note that our result predicts the occurrence of phase-locking,
regardless of the amplitude of the forcing term.



2 Stability and boundedness via a Lyapunov functional

2.1 Existence and linear stability of equilibrium points

Depending on the parameters, system (1.1) can have one, two or three equilibrium points. At least one
equilibrium always exists and the number of equilibria cannot be more than three.
Let b1 = ¢'(ue). It is trivial to establish (noticing that b is a function of a):

Proposition 2.1. Let(ue,we) be an equilibrium point. Let eaby < 1, then (ue,we) is locally asymptotically
stable if eby < a and is a repellor if eby > a. If eaby > 1, then (ue,we) is a saddle point. If caby = 1, then
(te,we) is unstable if by > a.

2.2 A Lyapunov Functional for FitzHugh-Nagumo’s Equations

We introduce the values

2eab?
T=(1-¢bia)— £4%
9
and b2
a
S=-=24b ——
3+1 €

where by = ¢'(u.) and be = ¢"' (u.)/2.

Proposition 2.2. Let (ue,we) be an equilibrium of (1.1). Let

l[u—ue—a(w—we)]2+G(w—we), (2.1)

Viu,w) = 5

where G(z) = teaa?[a®z? — Faxby — 2(by — L))

Let the line L be defined by L = {(u,w)|u = ue + a(w — we)}. Then,

a) V(u,w) >0 for all (u,w) # (ue,we) if and only if T > 0. If T <0, then V < 0 in a bounded set S,
which is symmetric about the line L.

b) On L the derivative V= %Vu + a Vi = 0. Additionally, V < 0 iff S < 0 and (u,v) € L. If S > 0,
there exists an ellipse OE, surrounding a region € such that: i) V <0if (u,w) belongs to the complement of
DEOUEOSUL; i) V >0 if (u,w) € £\ (LNE).

¢) If ebia < 1 and by > a, there exists a neighborhood of the equilibrium (u.,w.) which no solution
enters. If ebja < 1 and bie < a, there is a neighborhood of the equilibrium which no solution leaves. These
neighborhoods can be found explicitly by using level curves of V.

d) Suppose T > 0 and S < 0. If (ue,w.) is unique, it is globally asymptotically stable. If (ue,we) is not
unique, it is the only stable equilibrium.

Proof. After the transformations v = u — e, 8 = w — we, and v — as = y,s = = the system can be
rewritten as

)=y ylt) = —yf(z,y) — g1(2),

where
f(z,y) = 5—:(y2 + (Bax — ba)y + (?>c12x2 —2bsax —b1)) +a

g1(x) = —e(biax + baa’x? — a®2®) + x.

The line L is the one with equation y = 0.
Then
V(z,y) =y*/2+ G(x),

and

Gla) = /0 " g€, (2.2)

A simple computation yields that G(z) > 0Vx # 0 (and therefore V(z,y) > 0,V(z,y) # (0,0)) if and
only if T' > 0. The level curves V(z,y) = ¢,c > 0 are closed nested ovals encircling the origin.



If T <0, the set V(x,y) = 0 consists of (0,0) and a closed curve, defined by

1 4 1
2 27_ 2 2
y" = jeaw [—a’z® + gang +2(by — 5aﬂ' (2.3)

If T =0, the set V(x,y) = 0 consists of (0,0) and another point on the y = 0 axis.

It is symmetric about the axis y = 0 and surrounds a bounded set S such that V(z,y) <0 if (z,y) € S.

b) V(x,y) = —y?f(z,y) and obviously V =0on L and V < 0 iff f(z,y) >0 and y # 0. The last is true
for all (z,y) iff S < 0 which is calculated by transforming f(z,y) into a quadratic form and analyzing it.

Alternatively, the curve f(z,y) = 0 is an ellipse € in the (z, y)-plane if and only if S > 0. V > 0 only in
the interior of the ellipse excluding its intersection with L.

¢) That the mentioned neighborhoods exist follows from Proposition 2.1. Next we clarify the construction
of the level curves.

If eaby < 1 then there exists a neighborhood of (0,0) such that V(z,y) > 0 for all (x,y) # (0,0) in this
neighborhood. Le. if S exists, it does not contain the origin. If also eby > a, then S > 0. Therefore V > 0
inside £ (which exists according to b)) except on L NE. & surrounds the origin because f(0,0) = —eb; + a,
ie. V > 0in the vicinity of the origin (except on the line y = 0). It is then enough to find a level curve
V = ¢ which is outside of S (if it exists) and inside € to ensure that the trajectories of all solutions starting
on the curve do not enter the region surrounded by it.

Alternatively, if eb; < a, the ellipse £ either does not exist or does (provided S > 0) but the origin lies
outside it. Then the level curve we are looking for is one that does not cross both S and £.

d)IfT >0and S <0, then V > 0 and V<0 (with V =0onlyony = 0). Since V is monotone decreasing
along the trajectory of any non-equilibrium solution and bounded below, the solution must converge to a
point (z*,0) and the only such point is the equilibrium.

If (ue,we) is not unique, let (u., ws) be any other equilibrium. Take the region surrounded by the level
curve V(z,y) = V(ux — te, ws — we) — 0 for arbitrarily small 6 > 0. All solutions starting in this region
converge to an equilibrium contained in the region, which is either (ue,w.) or at most another one (the
third) equilibrium. Because ¢ is arbitrarily small, (u.,w.) cannot be stable.

Finally, to obtain the statements of the proposition, we return back to coordinates u, w.

2.3 Boundedness of the Solutions
The Lyapunov functional allows to prove the boundedness of solutions of (1.1)in an elegant way.

Proposition 2.3. There exists a family of nested bounded forward invariant sets of (1.1) covering the whole
(u, w)-plane. Thus, every solution of (1.1) is bounded for t > 0.

Proof. Consider the functional V defined by (2.1). Let S and &£ be the regions from the previous section,
if they exist.
Since &, S are bounded sets, we choose ¢ = min{c > 0|V (u,w) = ¢ D EUS U (e, we)}. Then for any
sequence
{ci}yei >cim1 > .0 8¢ — 00,1 — 00,

the curves V(u,w) = ¢; enclose nested bounded sets D; such that any point (u,w) belongs to such a set for
a sufficiently large ¢;. Each of the sets D; is a forward invariant set. Thus, each solution of (1.1) is bounded
and confined in a forward invariant set containing its initial condition.

3 Phase plane and bifurcation analysis

The possible phase plane portraits of the system (1.1) were revealed in [1]. Here we are interested in how
such portraits can appear, the types of bifurcations, the values of the parameters when changes arise.

Proposition 3.1. As the eigenvalues 1, ua of any equilibrium (ue, we) are of the form

1 1
H1,2 = iR(ev a, bl) =+ 5 V R2 + 4@7 (31)

where Q(e,a,by) = eaby — 1 and R = by — a, Hopf bifurcation occurs in cases when R =0 and Q < 0.



3.1 The case with I =0

We consider this case separately because the equilibria can be found explicitly.
In this case (ue,we) = (0,0) is always an equilibrium point. Then b, = ¢'(u.) = —A < 0, and according
to Proposition 2.1, it is always locally stable.

3.1.1.Single Equilibrium Point.
First, (0,0) is the only equilibrium point if and only if

4

Proposition 3.2. Let I =0, suppose (0,0) is a unique equilibrium point. Suppose

1
a>—-¢ and

! (3.3)
Lo s caony< o 5@ty '
2 5 4 2 € 4

holds, then the equilibrium point (0,0) is globally asymptotically stable.
The proof uses the Lyapunov functional and is in Appendix A.

For the case when (3.3) does not hold, one can only state

Proposition 3.3. Let (0,0) be a unique equilibrium point. If (3.3) does not hold, (0,0) is either globally
asymptotically stable, or there exists a stable periodic orbit.

The proof follows from Poincare- Bendixon’s theorem. However, we have not been able to observe an
instance when such an orbit exists for the case of unique equilibrium.

As (0,0) is always stable, Hopf bifurcations do not occur in this case.

3.1.2. More Than One Equilibrium: Subcritical Hopf and Bogdanov-Takens Bifurcation

On the two-dimensional parameter surface ea(1 — A\)? = 4 a saddle-node bifurcation of equilibria occurs.
Bogdanov-Takens (B-T) bifurcations [7] occur when a = 1 and ea(1 — A\)2 = 4. Small limit cycles exist in
the vicinity of the curve a = 1,¢ = ﬁ at least for a < 1. Here we describe in some detail how the B-T
bifurcation is accomplished.

If ea(1 — \)? > 4, there are 2 equilibrium points in the first quadrant, E; = (u1,w;) and Eo = (ug, ws),
where

ws
ur =p—ryq, u2=p+ryq wi:ﬁand
4 e 1- ) (3.4)

= 1 _—_— =

e cal—n2 P TT T

At F4, eab; > 1, which, according to Proposition 2.1 implies that F; is always a saddle point.

It is easy to check that for Fa, by = é —(1- )\)\/Eug. Then Q < 0 and it follows that Es is stable if
R < 0, a repellor if R > 0 and undergoes Hopf bifurcation when R = 0. The type of the Hopf bifurcation
(super or subcritical) cannot be determined in general, but in particular, for each given set of values of the
parameters calculations to determine it can be carried out, as done in Appendix B.

More precisely, if ea(l — X\)? > 4, the equilibrium Fy is unstable if

1+4A 1-—-2A

aRzl—aQ—aa(l—)\)\/ﬂ?—l—T\/ﬂ > 0. (3.5)
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Figure 1: Phase plane trajectories in the (u,w)- plane, when both Fy,Ey are
stable. I =0, a = 1.2, A =0.1, ¢ =14. Ez=(0,0) and E2=(0.928,0.77).

We see from (3.5) that if a > 1, F5 is stable independently of the values of €, A, because then R < 0 and
@ < 0. Some trajectories are attracted by Fy, others, by Es. Figure 1 shows a typical phase portrait in that
case. The basins of attraction of both equilibria are separated by the stable manifold of the saddle Ej.

If a < 1, E5 is a repellor for sufficiently small values of ¢, i.e. near the surface ca(1—\)? = 4, immediately
after the saddle-node bifurcation that causes the appearance of Fy and FEs.

For example, if ¢ = 14,a = 0.37 and A\ = 0.1, there are 2 positive equilibria besides the origin, and Fj5 is
a repellor, because (3.5) holds as is verified by direct calculation. All orbits, with the exception of the stable
manifold of E, are attracted to the origin.

Stated otherwise, if we fix ¢ > 4 and consider the curve a = ﬁ, for each a < 1 there is a value of A (in
fact an interval of values of \) such that E» is a repellor. Starting from such values of a, ¢, A, while keeping
€ > 4 fixed and increasing a, since R is a decreasing function of a, R will eventually become negative and
therefore F5 will become stable. The exchange of stability is realized via Hopf bifurcation, because @ < 0.
In the example above, by increasing a from 0.37, R becomes equal to 0 for a =~ 0.379785, which is the value
of a for which Hopf bifurcation occurs. Numerical simulations show that the bifurcation is subcritical. An
unstable periodic orbit exists for values of a larger than 0.379785, i.e. when Fs is stable, as shown in Figure
2. Solutions, starting inside the unstable periodic orbit, approach FE,, while solutions, starting outside of
the unstable periodic orbit (with the exception of E; and its stable manifold), approach the other stable
equilibrium (0,0) (Figure 2).

w

50,2



Figure 2: Phase plane trajectories in the (u,w)- plane, when both Ey,Es are
stable, but an unstable periodic solution surrounds E5. All solutions starting
near the orbit on its outer side approach Fy. Solutions starting inside approach
Ey. I =0,a=0.38 A=0.1,e=14.

That the Hopf bifurcation is subcritical can also be shown by direct calculation of the value G4 (see Ap-
pendix B). The constant G4 determining the type of the bifurcation is positive (22.5165), i.e. the bifurcation
is subcritical.

The analyzed case illustrates a Bogdanov-Takens bifurcation, as when a passes through 1 at the inter-
section with the curve a = ﬁ for each fixed € > 4, both eigenvalues of the newly emerged equilibrium
are 0. The Hopf bifurcation curve in the (a, A) space passes through this intersection point.

We note that, when compared to the case delineated in [7], p. 281, our example is different in the order
of events. In the case described in [7] the newly emerged equilibrium is stable and destabilizes while a stable
periodic orbit appears. In our case, it is unstable near the bifurcation curve and stabilizes later with the
appearance of an unstable periodic solution. Although this observation does not describe some completely
new phenomenon, it is worthwhile mentioning from an educational point of view.

3.2 The case with [ #0

3.2.1. Existence of Equilibria
The equilibria in this case satisfy the equations

eg(u)—%+[:0, I>0, 56
3.6
w=—.
a

Here again, there might be one, two, or three equilibria. Let ®(u) = eg(u) — 2. An equilibrium (u., w.)

should satisfy the equation ®(u.) = —I. There are three distinct cases.
a) If
3
=(1-XN*+X1-—=<0 3.7
s=(1-A?+A-= <0, (37)

®(u) is decreasing, thus there exists a unique equilibrium for all values of I.
b)When s = 0, ® has an inflection point at u = % The 3-dimensional set s = 0,1 = @(%) consists
of saddle-node bifurcation points. ®(u) is decreasing, and there exists a unique equilibrium for all values of

I

c) If s > 0,®(u) has a maximum I = @(%) and a minimum [,,, = @(#) Depending on the
relation between Iy, I, and I there can be 1, 2 or 3 equilibria. If Ij; < —I or if I,,, > —1I there is only
one equilibrium, if I,,, < —I < Iy, there are three equilibria, while I = —I; and I = —1I,,, are saddle-node
bifurcation values of the parameter I.

3.2.2. Single Equilibrium Point: Stable, Unstable and Supercritical Hopf Bifurcation

If only one equilibrium, Ey = (ug,wo) exists, unlike (0,0) for the I = 0 case, it can be either stable or
unstable. The considerations in the previous section show that if (ug,wp) is a unique equilibrium and if
s # 0, then @ (ug) =g’ (ug) — 2 < 0. If s = 0, then ®'(ug) < 0.

Further, Proposition 2.1 tells us that if eg’(ug) — % < 0, then Ej is asymptotically stable if

eg'(uo) < a. (3.8)

Thus, if Ey is unique, it is asymptotically stable if (3.8) holds with the exception of the case when s = 0
and [ = —@(%). It is unstable if e¢’(ug) > a. In this case a stable limit cycle exists, which follows from
Poincare-Bendixon’s theorem. Because the exchange of stability is achieved via Hopf bifurcation (see 3.1)
the stable cycle appears as a result of a supercritical one when eg’(ug) = a.

We can combine these observations and the results from the previous section to obtain the following



Proposition 3.4. If s < 0 or if s > 0 and either I < —‘IJ(L;‘/E) or I > —@(#) hold, then the
unique equilibrium Fo = (ug,wo) s asymptotically stable if either a > 1 or eg’(ug) < a < 1 and unstable if
a < eg'(ug) < 1. In the last case, a stable periodic orbit exists around Fy.

When Ej is unique and stable, there are cases in which we can prove that it is globally stable by using
the Lyapunov functional from section 2.

Let us examine a numerical example with a=0.06, ¢ = 14,A\ = 0.5 and vary I from 4 to 13 (Figure
3). There is a unique equilibrium for all these parameter values and two Hopf bifurcations take place. For
I < 4.2 the unique equilibrium is stable and loses stability near this value. A supercritical Hopf bifurcation
leads to the appearance of a limit cycle, whose amplitude increases initially with increase in I and later
decreases again until a second Hopf bifurcation takes place at approximately I = 12.43, and the equilibrium
becomes stable again. The supercriticality of the Hopf bifurcations is also supported by calculating the value
of G4 (see Appendix B) which is the same negative value in both cases, G4 = —6.11724.

A N
I N

Figure 3: A limit cycle appears through Hopf bifurcation, moves upward and
disappears through another Hopf bifurcation.

a = 0.06, A =0.5, ¢ =14.

(a) I=4.26, (b) I=5, (c) I=7, (d) I=9, (e) I=11, (f) I=11.75, (g) I=12.42

3.2.3. More Than One Equilibrium: Subcritical Hopf bifurcations

Keeping a, \, ¢ fixed, the values I = I; and I = I, are equilibrium saddle-node bifurcation points, as
noted in Section 3.2.1. These bifurcations occur when the slopes of the nullclines are the same, i.e. when
£g'(ue) = 1/a. Similarly to the case when I = 0, these points are B-T bifurcation points if a = 1.

Suppose that (3.6) has three positive solutions: Ey = (ug,wp), E1 = (u1,w1), B2 = (ug,ws), where
ug < u; < ug. FEj is always a saddle point, since eg’(u1) > % For Eyg and Es it is easily seen that
D' (u;) = eg'(u;) — % < 0,i = 0,2. The equilibrium points Fy and Es will be locally stable or repellors,
depending on whether eg’(u;) is less or greater than a.

(A) Obviously, if a > 1, the condition ®'(u;) < 0,7 =0 or 2 implies stability of E;.

(B) Let a < 1. Let us denote ¥(u) = eg(u) — au. Then E;,i = 0,2 is asymptotically stable if ¥U'(u;) <0
and unstable if ¥'(u;) > 0. Let apr > auy, be the roots of ' and vpr > 7y, be the roots of U'. An easy
calculation shows that aps < var and oy, > . Since ®'(u;) < 0, then u; < @y, or u; > apy. Therefore
E; is stable if u; < v, or u; > yar (see Figure 4). Thus the stability of Fy and F2 depends on the relative
location of the roots of ®(u) + I with respect to the roots of ¥’ when I varies.

Starting from a value of I < —I; and increasing I until I > —1I,,, first only FEy exists and it is stable if
I is small enough (as in a) on Figure 4). When I is increased:

«) Ep becomes unstable;

B) Ey and E, appear via a saddle-node bifurcation, Fy being unstable (as in Fig 4b);

v) E2 becomes stable.

These three phenomena always occur but not always in this order.

10



0) Ey and Ey disappear (as in Fig 4c).

e “\.\‘ a P+,

Figure 4: Equilibria of ® + I are stable if located to the left of ~,, or to the
right of ya; and unstable if located between ~,,, a,, or ay,vy- See text for
more detail.

Eight different scenarios are possible which can be described in the following way. Let us denote by
El,i=0,2,q = s,u the equilibria E;,i = 0,2 in the cases when they are stable (¢ = s) or unstable (¢ = u).
Then the 8 scenarios can be described as

(1) E§ — {EG, B3} — {Ey, BS'Y — {Eq, B3} — E3;
(i) Bg — Ey — {Eq, By} — By — E3;
(iid) Eg — {EG, By} — {E3, B3} — {EG, B3} — E3;
(i) Eg — {Eg, By} — {Eq, B3} — E3;
(v)EG — {EG, By} — {EG, E3} — E3;
(vi)E§ — By — {Eq, By} — {Eqy, B3} — E3;
(vit) E5 — {Eg, By} — {Eg, B3} — E5 — E3;
(viit) By — {E5, By} — {Ey, B3} — E3.
The notation {E{, EY},q,p = s,u means that both Ey and E exist, while E! is used if only one
equilibrium exists. E7 is not included in the scheme to shorten notations. Fj is present whenever both Fj

and Fj are present and is always a saddle.
The 8 scenarios correspond to 8 bifurcation curves.

11
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Figure 5: Eight possible bifurcation curves. See text.

The exchanges of stability are always accomplished via Hopf bifurcations. Since each of the scenar-
ios involves 2 stability exchanges, which may be accomplished either via supercritical or subcritical Hopf
bifurcation, it follows that the number of potential qualitatively different sequences of events is at least 32.

However, the appearance and disappearance of periodic orbits, not originating via Hopf bifurcations
(possibly via homoclinic orbit of the saddle E; bifurcations) may make this number bigger.

We will not attempt to represent all the possible sequences of events that occur when I increases from
—00 to +o0o. We shall illustrate the statement in the previous paragraph by presenting the results of a
numerical computation of an example. It demonstrates the occurrence of several consecutive local and
global bifurcation events when increasing the value of I, including saddle-node bifurcations of equilibria and
of periodic orbits, subcritical Hopf bifurcations, homoclinic bifurcations, and a homoclinic orbit to a saddle
converting to a heteroclinic one and vice versa.

Ezample 1. In this example € = 13.4,a = 0.3, A = 0.0005.

We describe the numerical experiment for increasing values of I. The calculations were carried out
repeatedly with 3 different types of software. The results presented here are obtained using the package
DVODE (Lawrence Livermore National Laboratory, [3]).

For small enough I the stable equilibrium Ej is a global attractor. Fy and Es appear via a saddle-node
bifurcation but Ey continues to be globally stable for small positive values of I attracting all solutions except
E1, F5 and the stable manifold to E7. There exists no periodic solution. This is illustrated for I = 0 on Fig
6a.

When [ is approximately 0.0258541, the numerical calculations surprisingly show that a stable and an
unstable periodic orbit have appeared, seemingly simultaneously. One could suspect that a saddle-node
bifurcation of periodic solutions has occurred, but this is not the case, because the bigger orbit is stable and
surrounds all equilibria and the smaller one surrounds only Ey and is unstable. Ej attracts all solutions
starting inside the unstable periodic orbit. Fs is unstable in this case and all solutions starting outside of
the unstable periodic orbit are attracted by the stable one. This is illustrated on Fig. 6b. (S)
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Figure 6a: I=0. Ey attracts all solutions with the exception of the other two equilibria and
the stable manifold to Ej.

2

converges to per.orbit
 ————converges to

-0,

Figure 6b: 1=0.0258541. The solution starting at (0.27,0.9) converges to the stable periodic
orbit, as does the depicted solution started at (1,1). The solution starting at (0.25,0.77)
converges to the equilibrium Ey. An unstable orbit exists that separates the solutions
converging to Ey and the solutions converging to the stable large orbit.

To understand this phenomenon, we conducted more accurate calculations. They showed that when [
is slightly smaller (I ~ 0.025854050872), the solutions starting in a close proximity of Fs are attracted by
Ey while the large periodic orbit also exists and attracts the solutions outside of it and in a certain region
inside it to the right of Ey, F1, Fo line. This is illustrated on Figure 6c.

For values of I very close to but smaller than the above value the stable periodic solution does not exist.
To get some insight, we calculated numerically the quantity

= i led' (pr(s))—alds

where py(s) is the numerically computed periodic solution, for several consecutive values of I between I* =
0.025854051 and I** = 0.025854050872. The quantity f is equal to the second Floquet multiplier (the first is
1) of pr(s). For these values of I, f < 1 and it increases fast, approaching 1, when I decreases. For example
for I = 0.025854051, f ~ e~ 1836 for I = 0.0258540509, f ~ ¢~ 1994 for I = 0.025854050872, f ~ e~ 0-575,
We conclude that at a value I smaller than, but very close to I** = 0.025854050872 the periodic solution
becomes unstable. This loss of stability is accompanied by the coalescence of the stable periodic solution
with an unstable one [5], p. 492.
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Figure 6¢: I = 0.025854050872. All depicted solutions starting to the left of the equilibria
converge to Fy. See text for further explanation.

Further we present a possible reconstruction of the series of bifurcation events for values of I between I*
and I**. A part of it was proposed by one of the referees and complemented by the first author. The basic
player in all events is one of the stable manifolds of the saddle F; and specifically, its end at —oo.

Starting with values of I larger than I* and decreasing I, first an unstable (small and surrounding Ey)
and stable (large) periodic orbits exist, as represented on Fig. 7I. One of the stable manifolds to EF; is a
heteroclinic orbit starting at —oo from the ”small” periodic orbit. We shall refer to it as Mj. The other
manifold (Ms) is a heteroclinic orbit connecting F5 and E;. While further decreasing I, the small periodic
orbit and M; approach each other (Figure 7J) and coalesce into a homoclinic orbit of the saddle - i.e. now
the —oo end of M is at Fy (Figure 7K). The homoclinic orbit is structurally unstable and converts into a
heteroclinic one starting at —oo from Fy (Fig. 7L), which gradually expands.

For slightly smaller I both stable manifolds to E; continue to be heteroclinic orbits (Figure 7L, M),
surrounding the basin of attraction of Ey. The numerical calculations fail to reveal what exactly happens
further but it can be conjectured that the "big” heteroclinic orbit swells (Figure 7M) until it converts again
to a homoclinic orbit T', i.e. the —oco end of M; is now at F; again (Figure 7N). The homoclinic orbit
exists only at the point of bifurcation and disappears for smaller I to form an unstable ”large” periodic orbit
containing now all equilibria and located inside the stable periodic orbit (Fig. 70). These two periodic orbits
later on coalesce and disappear simultaneously (Fig. 7P).

Note that the events between the disappearance of the ”small” and the ”large” unstable periodic orbits
happen very fast, i.e. in a very narrow range of values of I (an interval of magnitude 10~7!). This is the
reason why these events are hardly detectable via computations and why it originally seemed that the stable
periodic solution disappears simultaneously with the ”small” unstable periodic one.

The hypothetical scenario described above is the most probable one, as it is supported by numerical
calculations. Another possible route we considered is the one in which the homoclinic orbit I (figure 7N)
coalesces with the stable periodic solution. This would have been possible only if F; and the ”angular” point
A (Fig. 7TN) of the stable orbit coalesce at the bifurcation value. Our numerical calculations show that this
is not the case. When I approaches the bifurcation value, E; and A stay apart at almost the same distance.
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Figure 7: A full sequence of events corresponding to Example 1. A-Q plots are represented in
decreasing order of I. Dashed lines correspond to unstable periodic orbits; solid lines - to stable
periodic solutions and solution trajectories; dotted lines - to stable manifolds to the saddle.
The shape of the limit cycle as depicted is only representative and does not correspond exactly
to the actual one in all of the cases.

Additionally, the saddle quantity, [7], is positive:

1
Uzag'(ul)—a>E—a=1/0.3—0.3>0.
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This indicates that the homoclinic orbit of the saddle appeared as a result of a bifurcation of an unstable
periodic solution. These calculations and the loss of stability of the limit cycle make us believe in the validity
of the proposed events.

Note that in this case the bifurcating unstable periodic solution is outside the homoclinic orbit - a non
typical situation compared to the usually discussed in the literature ones ([7, 6]).

After this necessary “roll-back” we continue from the point (S) (just before Figure 6). Increasing I from
0.0258541, we observe numerically that Fy loses stability and the remaining attractor is the large periodic
orbit (Fig. 7H). At approximately I = 0.2, E5 finally becomes stable (Fig. 7G). This is accomplished by
a subcritical Hopf bifurcation. An unstable periodic solution appears when FEs gains stability. The limit
cycle still exists and all solutions starting out of the unstable periodic solution approach it. FEs is stable
for all values of I greater than 0.2. Further, when [ is approximately equal to 0.2138, the small periodic
solution disappears coalescing with the homoclinic orbit of the saddle as had happened (as described above)
with the previously existing unstable periodic solution (Fig. 7F). In a manner completely similar to the
steps illustrated on Figures 7TM-O, the large periodic solution disappears next and finally, as I increases, the
equilibrium points Fy and E; approach each other and disappear in a saddle-node bifurcation, leaving Es
the only attractor.

The sequence of events depicted on Figure 7 is in agreement with the bifurcation diagram on Figure 5(i).
Obviously the same bifurcation diagram may correspond to different sequences of bifurcation events.

4 FH-N equations with periodic forcing
Consider FH-N equations with periodic forcing:

i =-culu—N)(1—u)—w+ F(t),

where F'(t) is a periodic forcing term with period T'.
If we set x = w,y = u — aw, then

i =y, v =-yf(z,y) — q1(z) + F(2),

where f and g; are defined as in Section 2, u, = 0. This is the Cauchy normal form of the second order
equation:
&+ f(z, )t + g1(x) = F(t).
According to [5], pp. 171-178, if there are constants a,m, M > 0 such that:
() for |z| 2 & [y| > @, f(=, y) > m,
(i) for (z,y) € R?, f(z,y) > —M,
(iii) for |z| > @, there holds zg (x ) > 0,
(iv) the functlon g1(z) is monotone increasing in (—oo, —a) and (a, 0o),
(v) [g1(2)] — oo as |z| — oo,
(vi) g1(z)/G(z) — 0 as |x|—>oo where G(z) = [} g1(u
then the system has a non constant perlodlc solution Wlth the same period T of the forcing term.

Applying this result yields
Proposition 4.1. If F(t) is a T-periodic forcing, then (4.1) has a T-periodic solution.

The proof is in Appendix A.

As a demonstration, we present an example with a FH-N system perturbed by the periodic ”output”
u(t) of another similar system, i.e. the two systems are coupled oscillators.

Namely, we calculate numerically the solutions of the system

w=cu(l—u)(u—N) —w+1T
w =u—aw
u'1 = €1U1(1 — ul)(ul — )\1) —wi + 0u

/
Wy = U — a1wy,
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where ¢ = 14,e7 = 13.4,a = 0.06,a; = 0.1,A = 0.5,A\; = 0.005,1 = 5 and 6 can take different values to
enhance or weaken the forcing.

For § = 0.75 we find numerically that the whole system has a periodic attractor with a period equal to
the forcing period.

Besides solutions with the same period T of the forcing function, it is possible to have solutions with
a period, which is an integer multiple of T'. For example, for # = 0.05, the forced system has a periodic
attractor with a period twice as big as the forcing period.

It is worthwhile to remark that the last theorem proves that a periodic solution with the same period as
that of the forcing exists (a phenomenon usually referred to as phase locking) no matter what the amplitude
of the forcing is.
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Appendix A.
Proof of Proposition 3.2. Consider the functional V' (u,w) defined by (2.1). For the (0,0) equilibrium we
have
by = A+ 1,b1 = —A.

We shall show that if (3.2) holds, i.e. if (0,0) is a unique equilibrium, then G(w) > 0, Vw.
G(w) is a polynomial of degree 4 in w, which has two repeated roots at the origin, i.e. G(w) has a local
extremum at 0. We explore the existence of other extrema.
G'(w) =0« g1(w) =0 (see 2.2).
But g g
g1(w) = —elg'(0)aw + 3¢"(0)(aw)* + =¢"'(0) (aw)”] + w

(see the definition of g7 in Section 2.2). Since the last expression in the brackets is a part of a Taylor
expansion of g(aw) at 0, we get,

gl(w) = —e[g(aw) - 9(0)] +w = —gg(aw) + éaw'

Therefore,

1
G'(w) =0 & eglaw) = ~aw.

So, a value wy, is an extremum of G if and only if it satisfies g(aw,,) = %awm, which is true if and only if
(aWy, Wiy ) is an equilibrium solution. However, it was assumed that the only equilibrium is (0,0). It follows
that the only extremum of G is at 0 and it is a minimum (as G”(0) = 1 + Xea > 0).

Thus, in the case of an unique equilibrium, G(w) is positive everywhere, except at the origin, where it
is zero. So, consequently, V(u,w) is positive everywhere, except at the origin. This is true iff the value T'
from Section 2.2 is positive: T > 0 (Proposition 2.2, a)).

Further, for the value S defined in the beginning of Section 2.2, S < 0 is equivalent to

(1—/\)2+)\—3§ <0, (5.1)

which is equivalent to (3.3). Therefore, in the considered case, T' > 0,5 < 0, i.e. all conditions of Proposition
2.2 are fulfilled and thus (0, 0) is a globally asymptotically stable equilibrium of (1.1). O

Proof of Proposition 4.1

The existence of a constant positive value M is easy to establish since f(z,y) has a minimum at z =
(A+1)/(3a),y = 0 at which point f has the value —[¢(A\> — A+ 1)/3 — a].
Set M =|e(\2 =X +1)/3 —al.
Further, if ¢ > 0 is large enough, the curve £ : f(x,y) = ¢ exists and is an ellipse (compare with Section 2).
Take a square Q = {|z| < a1, |y| < a1}, containing £ and set m = (.

Next, xg1(z) is a fourth degree polynomial, where the highest power in x has a positive coefficient.
Therefore, for some ag, xg1(z) > 0 if > az > 0.

Further, since g1 (z) is a third degree polynomial, there is a ag, such that g;(x) is monotone increasing if
|z] > as.

Set @ = maz (a1, az,az). Then (i), (iii) and (iv) hold.

Finally, (v) and (vi) are immediate. This concludes the proof.

O

Appendix B. Stability of the periodic solutions arising through Hopf bifurcation

Suppose £¢’(u.) = a. This is the condition for occurrence of Hopf bifurcation for system (1.1). Shift
the equilibrium point (u.,w.) to the origin by the transformation 4 = u — e, w = w — we. Then make the
transformation & = au + 0, j = (1 + @)t — 2a1.
The equations transform 1.1 to:

. 2a% + G5 202495

= b -

T=ytash (g ) el )
. : 2aT + 7 207 +y
— 2 2 2 2 3
y=—(-a)i+eb(l+a)(577)" —e+a) (G 77)"



where by = ¢”(u.)/2.
If we set 7 = /1 —a?t,x = +/1—a2%,y = ¢ and " stands for differentiation with respect to 7, then the
equations can be written as:

&=y +ao(prx + p2y)® + ar(prz + p2y)®,
U= —x+ co(p1x + p2y)? + c1(p1w + p2y)?,

where
ag = abse, a1 = —ae,
_ 2a _ 1
2B+ PRt
1+a? 1+a?
co = ———=¢cbs, c1=-

—-=.
V1 —a?

Following the Andronov- Hopf Bifurcation Theorem ([5], p.415-434), we look for a Lyapunov function of the
form :
F(x,y) = £L'2 + y2 + ering(xa y)v

where F; is a homogeneous polynomial of degree i. Using
F3 = apz® + a17%y + agzy® + azy® and Fy = fox + fra’y + az®y® + Bazy® + Bay?,
we choose the constants suitably, so that

F(z,y) = Ga(a® + ) + o((«® +¢°)°).

This is done by choosing;:

ap = —2(2a0p1p2 + cop? + 2¢0p3)/3, o1 = 2a0p?,
= —2cop§, ag = 2(2cop1p2 + aopg + 2a0p%)/3.

081, B3 are chosen so that they satisfy the two linear algebraic equations:
Bi + B3 = 2a1p} — 2c1p + Bagaoept + coarpT — aozps — 3coasps,

501 — 303 = —6a1p1p + 4a1p] — 6e1pTps + 3agao(2pT — p3) — 4agarpipa+
o1 (2p} — p3) — agaap; — dcooapipa — 3coaispy.
Gy is then given by :
Gy = 2a1p} + 3aoaop; + coorpt — fi.
Using this formula, we calculate G4 in each separate case. If G4 < 0, the periodic solution emerging

through Hopf bifurcation is stable, i.e. the bifurcation is supercritical. If G4 > 0, the periodic solution is
unstable, i.e. the bifurcation is subcritical.
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