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Initiation of the Propagated Disturbance

By W. A. H. RusuroN
Research Fellow of Emmanuel College, Cambridge

(Communicated by E. D. Adrian, F.R.S.—Received 7 July 1937—
Revised 22 September 1937)

PART I—GENERAL THEORY

It has long been supposed that the mechanism of propagation is the
stimulation of the inactive region just in front, by the advancing action-
potential wave. Plausible as is this theory, it is only within the last year
that evidence has been published which puts the matter beyond doubt.

Blair and Erlanger (1936b) obtained suggestive evidence by blocking
a single impulse with calcium or anodal polarization. They found that this
blocked impulse left a transitory state of enhanced conductivity which
allowed a second impulse to be propagated. The nature of this enhancement
was studied independently and in greater detail by Hodgkin (1937). He
used cold or pressure to block the first impulse, and found that the lowering
of threshold on the farther side of the block had the same spatial and
temporal distribution as had the spread of the action current. Moreover,
the action current spread had the same space-time distribution as that of
a subthreshold current applied from an external circuit, and so arranged
as to have the same time course as the action-potential wave.

Thus, whatever other factors may conceivably be involved, the action
current certainly spreads forward into the inactive region of a nerve in
the same way as does a current from the outside, and this spread will
account for the lowering of threshold observed. But since this lowering
may be as much as 90 %, at some distance in front of the active region,
there can be little doubt that close to the active region itself, the lowering
will be far more than 100 9%,.

We may thus conclude that the action-potential wave normally propa-
gated is of an intensity many times that sufficient to excite the neighbouring
portion of nerve; it is quite a different matter, however, to suppose that
this statement applies to the action-potential wave, as it is first initiated
at the cathode of a stimulating circuit. For the normal propagated wave
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Inatiation of the Propagated Disturbance 211

consists of an active region some centimetres in length, each element of
which may be supposed to contribute (though not equally) to the excitation
of the region in front of the wave. On the other hand, the excitation wave
at the moment of its inception will occupy only a very small length, and
be correspondingly feeble and might in fact be insufficient to propagate
unless fostered by the continued application of the external stimulus.

Now the classical treatment of the excitation process does not take this
into consideration at all. It has been customary to assume not only that
when a certain membrane in the neighbourhood of the applied cathode is
depolarized to a critical extent the action-potential wave arises, but that
this wave from the start is of sufficient intensity to propagate. This last
conclusion, however, has never been justified, it is inconsistent with the
above simple concept of the flow of action current, and moreover, the
expectations to which it leads differ in certain respects from those where
the feebleness of the initial response is considered. It therefore appeared
worth while to investigate theoretically this concept of the initiation of
the propagated disturbance.

Now, though a number of conclusions follow readily from intuitive
considerations, one cannot obtain even approximately quantitative results
without a detailed mathematical investigation, and this has the dis-
advantage that unless the assumptions are greatly over-simplified, the
resulting equations are (to me at least) insoluble.

It has therefore seemed best to attempt the investigation as follows.
Assumptions are made, in many cases grossly over-simple, but such as will
allow of a relatively easy mathematical treatment over a very wide range
of possible stimuli. A graphical analysis is described which will permit
those not familiar with the underlying equations to obtain solutions in
a routine manner for any given temporal form of stimulus, so that it will
be relatively easy to compare experimental results with the expectations
of theory over a wide field, and then it will often be easy to see how such
deviations as will be found may be due to the over-simplification of the
assumptions. Finally, if there is a general confirmation of the present
concept, it may be worth while to develop the theory upon more accurate
assumptions, but with incomparably greater difficulty.

The present treatment will consist of three sections. In the first the
assumptions will be stated and discussed, the second will contain the mathe-
matical treatment, and the resulting conclusions will be summarized in the
third. Those, therefore, who do not wish to examine the details of the
mathematics may omit the middle section and still appreciate the assump-
tions and the conclusions.
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In Part I, the general conclusions of the first part will be applied to
a number of specific cases to show that the present theory fits in a fairly
satisfactory manner a wide range of known observation, and to point out
a number of conditions where certain results should be expected which
differ from the classical expectations. Mention will also be made of the
principal observations which will not fit the present theory.

ASSUMPTIONS

The nerve is supposed to have a cable structure, the axis cylinder and
the interstitial fluid being relatively well conducting, and the myelin
sheath being highly resistant. These resistances are supposed to be non-
capacitative. The nodes of Ranvier are neglected. Closely applied to the
myelin sheath is a fine membrane which is supposed to be capacitative,
but so leaky that its resistance is negligible compared with that of the
myelin sheath which is in series with it.

Each element of inactive nerve sheath may be represented by the circuit
(4), fig. 1, where R is the ohmic resistance of the myelin, ¢ the capacity
of the fine membrane applied closely to it, p the leak resistance of the
membrane, where p/R is negligible. Finally Z is the resting potential across
the sheath which is observed as the injury potential.

It is clear that the resting charge on the condenser will be altered by
passage of current through the myelin, and we assume that when this
alteration attains a critical value, the local condition of the membrane
suddenly changes. The intimate nature of this change is not considered,
but the result is that the resting potential  is abolished, so that the sheath
in the active region is represented by (B), fig. 1.

Since any given element of sheath is connected with all other elements
through the conducting interstitial fluid and axis cylinder, it follows that
the change of potential arising where the given element changes from in-
active to active state, will affect in some degree all points on the nerve,
though principally the regions adjacent. The nature of this spread is
illustrated in fig. 2.

Suppose that the whole nerve is inactive except for a stretch 5 mm. in
length whose centre point is O. Then the potential of each point on the
surface of the nerve due simply to the activity of this stretch is given by
the lowest member of the family of continuous curves in fig. 2. The other
members of the family correspond, in order, to the potential distribution
when the active lengths are 10, 20, 30, 40, 50 mm.
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It is seen that each curve is concave towards the horizontal axis in the
central region, and convex on either side. The transition is at an abscissa
corresponding exactly to the edge of the active region. The dotted curve
passes through these inflexion points, hence the horizontal distance between
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F1a. 1—Schematic circuit diagram of nerve.

F1a. 2—Abscissae: distances along nerve. Ordinates: potential of surface of nerve
due to the activity of various lengths. O is the centre of the active stretch, and for
each curve, the limits of the active region are the abscissae corresponding to the
intersection of the curve with the dotted exponentials.

the two intersections for any member of the family gives the corresponding
length of active nerve.

From fig. 2 it is easily appreciated that 5 mm. of active nerve only
develops about one-quarter the action potential of a long active stretch,
comparing the potentials at O, the mid-points of the two active regions;
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and about one-half comparing the junctions of active and inactive regions
in the two cases.

Shorter active lengths will clearly develop smaller potentials as given
by the corresponding values of the dotted curve.

MATHEMATICAL SECTION
Let
V, = potential outside the sheath.
¥, = potential inside.
1, = current flowing parallel to nerve outside.
15 = current flowing parallel inside.
I =4, +1,
7, = resistance per unit length of interstitial fluid.
7, = resistance per unit length of axis cylinder.
1/R = conductivity per unit length of sheath for current passing radially.
1/p = conductivity per unit length of membrane.
6 = charge per unit length on membrane.
0, = critical value of ¢ at which nerve becomes active.
E = potential in series with sheath responsible for injury and action
potential.
¢ = capacity of membrane per unit length.
L2 = R/(ry+1,).
a = c¢p = finite time.
p/R = 0.

CURRENT DISTRIBUTION IN NERVE

The nerve is represented electrically by the scheme of fig. 1, where the
elements are supposed to be infinitesimal and infinitely numerous. The
element of sheath is represented either by (4) or (B), according as it is
inactive or active at that point.

Currents from external circuits are led into the interstitial fluid accord-
ing to any known time-space distribution, and it is required to find an
expression for the charge on the membrane at any point and any time as
a combined result of nerve activity and external stimulus.

To obviate the necessity of going over the working separately for the
two types (4) and (B), let us assume that the sheath has the more general
electrical structure (C'), where K, may be either E or zero as particular
cases.
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Then, applying Kirchoff’s Laws to (),

Since current through condenser element = 64z,

and current through shunt element = 04x/cp,

*. current through R/Ax = (9—1-5%) Az,
V,—V, = R<9+ﬁ)+Q+Ex.
cp) ¢

But from the main network we have

2 L
——-a—;l = 7.y, —7; =1Tyly, Gy+iy=1.
Also %%z— = current density through sheath R
= (6+£).
cp
0 0\ 0 0

= 70y —11(L —1).
Gl P IA AN
éxz[R(O—i-gﬁ)‘i'z‘i'Ex]=(7’1+72)<0+ED)-—7’1§;'
Now putting cp=a, Rri+r)=L2
2 (45,0\ 1 0\ 0p ol K,
5ﬁ@*ﬁ"ﬁ@+ﬁ“‘aﬁfﬁa*ﬁ@’

and since p/R — 0,

2 1 (9+0 _ rn ol ?*E,
o2 L2J\" "a) T R'Ox Rox?
To solve, we note that if
LZaZ 1
(Fr 1)y =

_Zprx 2 Zpro Z
2yl =e Lf eLudx—l—eLf eludx
— 0 X

is a solution, as may be verified by differentiation.
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Thus putting Yy = (0+Z) / L2,
_ rn ol 0K,
T Rox o0a%’
we obtain

2R 0 -2e F( ol o%E, © -2 9l 02E
2 —e L I i Ly £ ©
L(9+ ) e fﬂwe (r 15, + P 2)dx+e fxe (Tlax sz)dx' (1)

That this solution is the particular one to suit the boundary conditions *
is seen by putting & = +o00, when the second member of equation (1)
vanishes, provided that 0I/0x and 0%E,/ox* are both zero for points far
from the origin.

Since E, is essentially a discontinuous function, being either £ or zero, exception
might be taken to the form 02E,/ox? in (1), and the same in lesser degree applies to
oI/ox. Since, however, equation (1) applies to any continuous function E,, it will
apply to 1+ tanh gz, which can be made to differ by less than any assignable quantity
from the discontinuous function with which we have to deal, by making ¢ large
enough. Hence (1) applies to the discontinuous case with infinitesimal error.

Equation (1) may be put into a slightly more convenient form by inte-
grating by parts the quantity 02E_/ox?, giving
2R 0 -7(® Fol e -zol
2t L z
L(0+ ) {e fﬁw axdyc+e Jx P dx}
1 -Zr* Z0F 2 -20F
Sl | %= L 7% 9
+L{ e J—w % dx+e fxe 5 dx} (2)
where the coefficient of 7, gives the contribution from the applied stimulus,
and the coefficient of 1/L the contribution from the active portions of nerve.
It would be easy, integrating by parts again, to change the quantities
under the integral sign from 01 /ox, 0E,/ox to I and E,, but the above form
is more convenient. For I and Z,, in the following analysis will be constant
over a certain range and then jump suddenly to a different constant value.
This allows the integral in the form (2) to be written down at once. For,
throughout the range in which I is constant, 0I/ox is zero and contributes
nothing. If at x,, I changes from I, to I, ,, then the value of

apt+de T a] _Zn rayt+4
f e L_—dx=e Lf dl—e (M1 L).
xp—Ax ax xp—Ax

The full value of the integral is thus simply
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Brror.Ar ELECTRODES

Suppose that the cathode is at x = 0, and the anode at x = —s. Then
I vanishes except for values of x between the electrodes, since in the
extrapolar regions all the current flowing away in the core must return
in the interstitial fluid, and hence ¢, +¢, = I = 0. Between the electrodes
I =1, the current passed from the external circuit. These assumptions
apply fairly accurately to the usual conditions of excitation. With regard
to the potential £, we assume that until 0 attains a value 0, it is £. But
as soon as 0; has been attained £, immediately assumes a fixed value zero
which is maintained indefinitely.

At face value this is a poor approximation to the truth, since the action-
potential wave appears to increase rather linearly than abruptly (Erlanger
and Blair 1933), and certainly lasts 1 or 2 msecs. But it must be remembered
that it has not been possible to record the onset of the action-potential
wave in circumstances uncomplicated by propagation and capacitative
spread, and all we know is that at the seat of generation of the action
potential the time course must certainly be more rapid than any recorded
wave.

With regard to the assumption of persistence of the action potential,
this is chiefly erroneous for slowly rising stimuli where accommodation
enters and complicates the matter in any case.

Suppose that at any moment ¢, the excited region extends from — X,
to X,, where X, is to the right of the cathode and — X, to the left. Con-
sider the value of 0 at a point x to the right of X,.

Then in equation (2) the integrals from z to co vanish, and applying
formula (3) we immediately obtain

2R (060 0\ = -8 -z XL Xp
(v YY_ T _. L L(L_p, L)
T (3t+oc) e L(l—e L)Liri+e L(el—e )L. (4)
Now, if we make the substitution
0=ge L

in (4) and divide throughout by e¢ Z we obtain

2R (04 ¢
_IT(E a

_s X, Xu
) =(l—e L) Lyr;+ (el —e L)%,

which shows that ¢ is independent of x.
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But we know that at = X,, 0 = 0,, thus at any greater value of

=X,
=0, = . (5)

Thus in the extrapolar region the charge diminishes exponentially with

the distance away from the nearest point of the active region with length

constant L. We may therefore learn whether the active region is advancing

or not by finding whether the charge at some fixed point in front is in-

creasing. This is obtained by combining (4) and (5), with the elimination of 0,
2R 20 % 2RO, % LLw s B &

2 77 oL — L —e L L_, L
75 oF + i (1—e T)+e e L, (6)

from which we see that the second member must be positive if propagation
is to occur at the instant considered.

Liminal Length—From equation (6) it is clear that the stimulus [ to
be effective must produce a change of such a magnitude that when the
stimulus is withdrawn 00/0¢ will still be positive.

X. X gpp X
(eL —e L)>—afleL.
2R0

X+ X, > —Lloge(l—ﬁ). (7)

Now the second member is independent of the nature of the stimulus.
Hence a necessary condition for stimulation is that a liminal length of
nerve X, + X, defined as above, be excited by the time that the stimulus
ceases.

X+ X,

Put 1—2‘%‘;1:}@:@ L (8)
at the liminal length. The constant %, which has no dimensions, plays an
important part in all the present treatment and may be called the ““propa-
gation constant” of the tissue.

This condition of a liminal length has just been shown to be a necessary
one, and it is easily seen to be sufficient. For, once the propagation has
begun after cessation of the stimulus, the only change in conditions is that
a greater and greater length of nerve becomes active, and hence a greater
and greater stimulus is applied. The condition of the liminal length assures
an initial velocity of propagation, positive though infinitesimal, and as
a greater length becomes active the velocity will increase to a fixed value.
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VELOCITY OF PROPAGATION AND SAFETY KACTOR

At a great distance from the origin, equation (6) becomes

2R 00 2RO, Xt X2
Ba el ¢ T

or, combining with (5) and (8),

00 ho

ot a(l—h)

But since in this region the impulse is travelling with constant velocity v,
we have

w_ 010
o~ T L
Lh
Hence V= 05(—1:7;) (9)

Now the safety factor may be defined as one less than the ratio of the
existing value of & to the value which £ must assume to reduce the velocity
just to zero. But from (8) it is seen that ¥ is inversely as (1 —#%). Hence
the safety factor is one less than the reciprocal of the ratio of the existing
value of (1—4) to the value that this must assume to abolish conduction
velocity. But from (9) the latter condition is satisfied by A =0o0r 1 -/ = 1.

Hence Safety factor = (10)

1-4°

THE RHEOBASE

The rheobase must have the intensity to raise to the value 6, the charge
immediately under the cathode, and it must furthermore be sufficient to
allow propagation from this point indefinitely. We proceed to show that
if the first condition is satisfied, the second will also be satisfied.

Let I, be the value of I; which satisfies the first condition, then from (4)
we see that I, must have such a value that 00/0¢ vanishes when

0=0,e L,
X, and X, being zero. Thus
Iyry L -7 2RO,

Vol. CXXIV—B. 9
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Putting I = I, equation (6) becomes

X, X, __Xl

b= —(1—=h)(eL—1)4el—e L
o %
=hel—-1)+(1—e L)

And since X,>0> — X, 00/0¢ is always positive and I, the least current
which will activate the cathode, will propagate indefinitely, and is hence

the rheobase.

EXCITATION WITH SHORT INTERPOLAR LENGTH

We are now in a position to consider approximately the conditions of
efficacy of a stimulus of any known time course. But since this efficacy
depends upon the way in which propagation is initiated from the cathode,
it will be convenient to consider specifically two cases of bipolar electrodes,
namely, where the two electrodes are very close together, or very far apart,
since in these two cases the problem is fairly simple.

When the electrodes are very close together, the excitation spreads at
first entirely into the extrapolar region. For clearly the stimulus has no
exciting effect at the point midway between the electrodes (which is very
close to the cathode in the case considered), hence this point will not be
raised to activity until there is already more than the liminal length of
nerve excited in the extrapolar region. Thus the applied stimulus, by the
time that it ceases, must have raised to activity the region from the origin
to a point X, where from equation (8)

e

ISTEs

= h.

Consider then the value of @ at this point X. The condition that a stimulus
may be adequate is that at the moment of its cessation 6 has attained
a value of at least 0;. A stimulus is threshold when any diminution in
strength abolishes the foregoing condition.™

Considering this value of ¢ in equation (4) we obtain

2R(30 0\ Iirs 3
7@(‘8}4-&)* 7 +elt —1.

* Tt is not accurate to simplify the above statement and say that a threshold
stimulus is one where 0=0, at the cessation of the stimulus. Take, for example,
a constant current which lasts for a time somewhat longer than the utilization time
of the rheobase. If this current is below rheobasic intensity 6 will never attain 0,
(nor in fact k6,). If on the other hand the current is just adequate, & will attain 6,
by the utilization period, and be much greater by the time that the current ceases.
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Now there are two conditions in which X, is constant, i.e. in which the
propagation is not advancing. The first is during that period when the
charge under the cathode has not yet attained the value 0, in which case
X, =0, and the equation reduces to that for the charging of a shunted
condenser. The second case is when, although X, has some positive value,
yet, in the event of the removal or the diminution of the applied stimulus,
the value of 96/0t ceases to be positive. Since the active stretch continues
to be active in such a case, X, remains constant, and propagation may be
resumed if the stimulus increases again.

In both cases, therefore, we have an ordinary first order equation, which
may be simplified by substitution from (8), and by introducing the rheobase
value from (11), with s very smail,

B
IO = ;]j:é(].—h).
X,
. 00 I, el —1
v — -1 - 12
We thus obtain a at—}-ﬁ k@l(Io—}- =7 ) | (12)

Now, when X, is increasing, the value of 0 at X, is #;, hence at X

X~ X X,
= L - L
0 =0e =ho,el,

from which we can substitute for X, in equation (12) and obtain

o0 . ohTl 0
“ﬁ”—l_k[z;““k)ﬁfa;—l]’
a(l—hy o0 , T1
or - 7 .5‘0_01[j;(1_h)—1j|' (13)

In passing between the two ranges governed by equations (12) and (13)
account must be taken of the fact that, so long as the stimulus remains
of finite intensity, 0 is continuous. Thus, initially 0 is zero, it increases to
the value ¢,/ where it leaves the first range of integration, and this value
is consequently the initial value in the second range of integration.

At the moment when the impulse is initiated, ¢ changes from one range
of integration to the other. The value of § when this occurs may be called
the “transitional value”.

Again, from equation (12) it appears that, so long as I, suffers no dis-
continuity at the moment of changing range, the value of 96/0t will also
be continuous. For, at the instant of changing, the three variables 6,
1, and X, are all continuous and hence the expression for 90/0¢ is continuous.

Q2
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Thus, given a stimulus of any time course, the effect produced is obtained
first by the application of equation (12) with X, and the initial value of ¢
both put zero. When 6 attains the transitional value A0, we pass to (13)
maintaining continuity of 0. A further change back to (12) will have to
be made if, through diminution of stimulus, 0 ceases to increase. A simple
graphical method of working out these results will be described later in
this paper.

ExciraTioNn wiTHE GREAT INTERPOLAR LENGTH

In this case all the conditions of excitation are symmetrical on either
side of the cathode, consequently propagation will spread equally in both

directions, and we have
X, =X,,

and hence the liminal length is excited when the impulse has travelled only
half as far from the cathode as in the former case with short interpolar
length. Thus if X is the distance from the cathode in the present case

X
el = \Jh.

Putting these values in equation (4), substituting from (8) and intro-
ducing from (11) the value of the rheobase I, with s infinity,

B
IO = 7'1__L(1_k),

we obtain an equation analogous to (12) for the value of 6 at X.

X X
00 L el —e ©
Now when X, is increasing
X
0 =0,eLh.
0 L Jh (0 0,
Hence ag_ﬁl\/kl:foﬁ—l_h(a——é)]. (15)

Now 0/0, in the range of equation (15) lies between 4/k and unity, hence
if A is not less than 0-75, we may with an error less than 2-5 9%, put
VNG 0

0 =T o0
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Introducing this into equation (15) we obtain

a(1-1) 20, 0.,
Y R il Al ) ‘1;,(1—”)“2]‘ (16)

SOLUTION BY GRAPHICAL ANALYSIS
In a recent publication (Rushton 1937) I have described how by means
of a simple appliance made from a piece of card, and by a routine manipula-
tion, it is easy to solve the equation

oy B

where o is a constant, and f(f) any given function of ¢.

Now all the equations (12), (13), 14), (16) are of this type and can there-
fore be solved in this way, which is indeed usually the easiest treatment.
Moreover, since the matter is a perfectly routine one, it may be carried
out by those unfamiliar with the mathematics underlying the equations
to be solved, and they can in this way readily obtain an accurate graphical
solution for any given form of stimulus.

We shall first consider the case where the electrodes are close together,
and describe the procedure of the analysis without digressing to justify
the statements made. Then the modifications required for the case of great
interpolar distances will be given, and finally the validity of the process
will be demonstrated.

Two analysers are required, one with subtangent «,.and the other
a(l—h)/h. We know the rheobase I, and the stimulus I, at any instant,
hence we may plot I,/I, on a convenient vertical scale against time measured
horizontally, and so scaled that o occupies about 2-5 cm. An example is
shown in fig. 3 where the stimulus is a current which increases exponentially
from zero to a constant value, and is represented by the continuous curve
L /I, passing through the origin.

Two horizontal lines are drawn, one dotted at ordinate value unity, and
one continuous at 1/h. The curve I,/]; is now redrawn, “reflected” as it
were in the dotted horizontal, but with a different ordinate scale. We shall
refer to this curve as the “reflected curve”. It may be obtained first by
reflecting I,/I; in the ordinary way, and then reducing the ordinate dis-
tances between the curve and the dotted horizontal in the ratio (1—7)/h,
i.e. the ratio of the two subtangents to be used. The reflected curve thus

represents the quantity
1
[aent]L
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Now using the analyser with subtangent o and starting at the origin,
a curve is obtained which represents the development of 6 at a point distant
the liminal length from the cathode. Ordinates represent a linear scale in
0; the horizontal dotted line is £0,, the transitional value of @, and conse-
quently is the level at which we change from equation (12) to (13); the
upper horizontal line is 0,, and indicates the earliest point at which the
current may be cut off and still allow propagation. When the curve of 8

7] I’/lo
-1
L
el - - TT=— S SR -
Reflected curve
LA
6
| ] ! | |
[0} 74 20 3 4o 500

Fia. 3—Graphical analysis to obtain the curve of 6 as function of time, given I,,
a stimulus of any known time course (see text).

reaches the dotted horizontal, the other analyser with subtangent (1 —h)/%
is taken, and the curve continued without a break. This analyser must be
used with the pivot to the left of the tracing pencil, since the subtangent
in this case is negative; the curve to be analysed now is not Z;/I; but the

reflected curve
L1
[1-a-ni]L.

The curve of 0 is seen to suffer no discontinuity of gradient (as already
noted), but (in the present instance) to experience a point of inflexion at
the transitional value. Though the impulse is initiated when the curve
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cuts the dotted horizontal, it is not until the upper horizontal is reached
that the stimulus may be withdrawn without abolishing propagation.

If now the stimulating electrodes are far apart instead of being close
together, some of the quantities in the foregoing analysis must be altered.
The curve of I/, is plotted as before, also the horizontal at ordinate
unity, but this now corresponds to 0, 4/, the transitional value for this case,
hence the upper horizontal corresponding to 0, is drawn at ordinate A—*.
The first analyser is the same as before, but the second has a subtangent

5 1—-h
1+4°
The reflected curve is drawn with distances from the dotted horizontal
reduced in the ratio 1—h

1+h°
which is the ratio of the subtangents in the present case, and therefore
the curve represents the expression
2—(1=R)1,/1,
L+h )

As before, when the dotted horizontal is reached, the second analyser is
used (pivot to the left), and the reflected curve is the one now treated.
At the moment when 6 meets the upper horizontal, the stimulus may be
removed without abolishing conduction.

JUSTIFICATION

If in fig. 3 we adopt the scale which gives the value 6,/ to the dotted
horizontal, then the curve marked I,/I, becomes the curve of %0, 1,/1;, and
this, analysed with subtangent «, gives a solution of 6 which satisfies

agtg +0 = hﬁl%) ,
which is equation (12) with X, zero.

The solution also satisfies the conditions that initially 0 is zero and that
it only applies to values below the transitional value h6,. It is therefore
the required solution.

In the same way the second range of the analysis satisfies equation (13),
taking into account that the subtangent in this case is negative, being
—o(l—h)/h. Similarly the procedure for the case of great interpolar length
satisfies the analogous equations (14) and (15).
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TrIpPorLAR ELECTRODES

If the current is led into the nerve by more than two electrodes, certain
modifications must be made in some of the foregoing treatment, but in
general the results are much the same, and do not merit a detailed considera-
tion here. Omne case, however, is of particular interest, namely when the
cathode of a tripolar system has two equal anodes symmetrically situated
on either side of it, for unless s, the distance between two adjacent elec-
trodes, exceeds a certain value, excitation is impossible however strong the
stimulus.

+

Fic. 4—Symmetrical tripolar electrodes. The density of current (ordinates) crossing
the sheath is shown for each point on the nerve (abscissa).

Fig. 4 shows the charge produced at each point on the nerve between
the points —s and s by a current too weak to excite the cathode. It is
easily seen from equations (2) and (3) that if at the cathode the charge is

8
2(1—e" L) then at any point  lying between 0 and s the charge 6, is given by

s—x s+x

00:2e~z—e L _¢e L (17)

hence the charge is zero when

2z 8
el =2l -1,

Suppose that the distance between the two points of zero charge is the
liminal length, then

S
or e L= (18)
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Now it is clear that if s has a value less than this, propagation from the
cathode will be impossible, for we have seen that a region no longer excited
by external stimulus cannot be rendered active by less than the liminal
length, and the region beyond the points of zero charge is negatively excited.
Thus equation (18) represents the minimum value which s can have if any
stimulus is to be effective. If s exceeds this value, however, we shall show
that a rheobasic current merely sufficient to excite the cathodal point will
propagate.

For from equation (4) we may write down the condition that charge shall
increase at any instant, taking into account, that the contribution to
excitation of the active region is independent of the nature of the electrodes
but that the contribution of the applied stimulus is not the coefficient of
I, in (4) but some multiple of 6, in (17).

We thus obtain

z X, X, x s X x
gg (%? + -g) =e Lel—¢ L)+ A{Qe~Z —e L(e L4 el

Introducing the value that the current is rheobasic when 00/0t vanishes
for 0 = 0, and x = X, = 0 we obtain

x

1= (e_%-!—ez)}.

2R20 0 o2 X &
TAa—tﬁ-az(l—h)_e (e e L)+

Nl

-hL? {Ze—f —e
2(1—e )

Now introducing condition (18), and putting # = X,, which also means
0 =0,

2X2 XZ X‘Z X?
ﬁg?ﬁ:—lﬂwl—e L f(1+hye T—hle L+el)
E ot
X, X _2X,
—eL(l—¢ F)( F —h),
X _2Xe
and since 1>e &« and e % >h,

00/ot is always positive, and propagation will occur as far as the liminal
length, but no farther. If, however, at this point the stimulating current
ceases, propagation will continue indefinitely.

CONCLUSIONS FROM THE MATHEMATICS

1—In the extrapolar region the charge at the limit of the excited active
portion has the critical value 6,; the charge at other points at this instant
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diminish exponentially with their distance from this limit. The exponential
constant is L, the constant of length for the cable (5).*

2—When an applied stimulus stops, the necessary and sufficient con-
dition that propagation should continue is that a liminal length of nerve
should have been excited. This length is given by expression (7).

3—A constant of no dimensions 4 is defined in (8) and called the ““ propa-
gation constant”. It appears in most of the mathematical expressions
which have been derived.

4—It is clear that an adequate brief shock must excite the whole liminal
length immediately. An enduring current on the other hand need only
excite one point, whence the impulse, aided by the continued stimulus,
will propagate indefinitely (11).

5—Expressions are derived for the final velocity of propagatlon (9)
and for the safety factor (10).

6—Under the heading ‘“Graphical Analysis” a method is described
whereby the time course of excitation may be plotted in a routine fashion
by those unfamiliar with differential equations, for the case of a stimulus
of any given time course.

7—In the case of symmetrical tripolar electrodes, with the cathode in
the middle, excitation is impossible unless the distance s between adjacent
electrodes exceeds the value given by expression (18).

PART IT—APPLICATION OF THE THEORY

1—TEMPORAL CONSIDERATIONS
a—Brief Shocks

One of the chief difficulties in understanding the excitation process is
that the only thing which can be observed about excitation itself, is that
a given stimulus is or is not effective. All that we believe about the process
is inference from the properties of various stimuli which either are or are
not effective, together with a little collateral evidence derived from such
physical and chemical concomitants as we imagine to be relevant.

In Part I of this paper a method has been described which will enable
us to obtain a curve representing the way in which the excitation process
is supposed to develop under the action of any given stimulus. At first

* The numbers refer to the equations.
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sight it would seem that this whole curve is of no significance except as
a means of determining the fact that in one case propagation will occur,
and in another it will not; the intermediate part of the curve would seem
to rest as highly speculative and be outside the range of experimental
investigation. It becomes, therefore, a matter of the highest importance
to the practical application of the theory that these curves may in fact be
experimentally obtained by superposing brief shocks upon the stimulus to
be analysed.

One Shock:.

The action of a single instantaneous shock (hereafter called merely
a ““shock”’) is obviously to charge the nerve instantly to a value proportional
to the strength of shock and distributed in space as is the coefficient of 7,
in equation (2). If € is not raised to the critical value of ¢; over a region
equal to at least the liminal length, propagation cannot occur. A threshold
shock will raise instantly to activity exactly this length. If we apply to
a single shock the general graphical method described in Part I, it is clear
that the effect of a threshold shock is to raise 0 instantly to 6;,. Any other
strength of shock will similarly increase 0 by a value proportional to this
strength.

Now turning to the more general case, we have seen that, from the given
time curve of the stimulus, we can derive the curve of 6. We shall know 6
at any instant if we know what we must add to 0 to bring the value to 6,.
But it is just this information which is given by superposing a shock, and
if at any instant this is done, and simultaneously the stimulus is cut off,
it is clear that the threshold value of this shock is that necessary to increase
0 to 0,. By superposing threshold shocks, and simultaneously cutting off
the stimulus at various instants, therefore, we may obtain experimentally
a curve for comparison with that predicted.

Two Shocks.

The simplest case to consider is the curve due to one shock investigated
by adding a second after a varying interval. Fig. 5 gives the results to be
expected from the theory in the case where the electrodes are far apart.
The curves fall into three classes. In the first the shock raises 6 to an initial
value f, less than 0,.4/h, and the curve, after rising instantly, returns to
zero along an exponential of subtangent . In the second class, 6, has
a value between 6,4/h and 0, which signifies that a region of nerve from
- X, to +X, is made active where

X,

e L =,h6,/0,.
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The subsequent curve of 0 is given by (14), where I; = 0, and

X X,

e L=¢ L =,h0,0,

W, 01\/7»( 0, 491@,)

et si\egn T e, )

(¢} Time

F1c. 5—The time course of @ following a single instantaneous shock applied at time O.
The shape of the curve depends upon the strength of the shock (see text). For
comparison with the experimental results of Katz (1937).

Since the second member of the equation does not vary with time, the
curve of 0 is an exponential of time constant o, as shown by the dotted
curves in fig. 5. The initial value of each curve is 0, and the final value,
obtained by putting 00/0t = 0, is

_ O (O_30
e =123 (5-15):

In particular it will be seen that when 0, = 0,, both initial and final
values are 0,, and hence the curve coincides with the horizontal at that
level.

Now the curves are calculated on the assumption that the action potential
of the active stretch persists indefinitely, but we know that this is not the
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case, and that in fact the curves of  instead of continuing horizontally
at various levels must soon fall below these levels and return to the axis.
The course then, that we should actually expect to find, is one which would
coincide with the dotted curves of fig. 5 in their earlier course, and then
fall to the axis as shown by the continuous curves in fig. 5. The third class
of curves is when 0, is greater than 0;, in which case propagation will occur
unless an anodic shock is applied to reduce 8 below 6, again. The curve
in this case is obtained from the graphical analysis of the second range,
which solves equation (16). The curves are shown in fig. 5, rising steeply
above the level ¢;. They are exponentials asymptotic to the level 0,

. 1-%
with subtangent e ’

The special significance of these curves is that qualitatively at least they
resemble very closely those recently obtained by Katz (1937) in his experi-
mental investigation of this relation. His results show curves of the three
classes mentioned above, each exhibiting the appropriate characteristics.

It may be of interest to remark that the present theory and Katz’s experiments
were independent. Hodgkin and I had worked out these expectations, and sketched

some experimental details of the modification considered below, when Katz came to
discuss with us his first evidence of deviation from the simple exponential decay.

Three Shocks

If a shock is quickly followed by one that is equal but in the opposite
direction, the subsequent excitability, as measured by a third shock in
the same direction as the first, should show hardly any change from the
resting condition, provided that the initial shock was less than /A threshold
intensity. If this value is exceeded, however, the resulting excitability
curve should be that due to the local action potential alone. If the third
shock is sent in the same direction as the second it will test the action
potential (if any) which arises from the anode.

b—Constant Currents

Fig. 6 shows the curves obtained by the graphical analysis of constant
currents whose intensity in multiples of the rheobase is indicated by the
number on each curve. It is seen that subrheobasic currents cause an
exponential rise of @ to a final level proportional to the current but never
rising higher than the transitional value A8, for short interpolar length,
or /b0, for great interpolar length. Currents greater than the rheobase
give rise to curves which, below the transitional value, are the same as the
foregoing except that the ordinates are proportionally greater, but above
this value the curve changes from concave to convex.
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To establish the exact form of this upper portion consider the following
operation. Suppose that we perform the graphical analysis of the first part
of the curve again, but this time on a piece of tracing paper, and with every
thing reduced in scale in the ratio (1 —7%)/h (for the case of short interpolar
lengths). The curve obtained will naturally be the same as before, but

similarly reduced. The analyser used will have subtangent O}—i(l —h) and

hence will be the analyser used for the second portion of the curves in
fig. 6. Now, suppose that we take the tracing paper and put it upside down

105

095
090

05

(8] Time

Fia. 6—The time course of 6 following the making of a constant current at time O.
For comparison with the experimental results of Rushton (1932) which are
plotted the other way up.

on fig. 6, with the horizontal axis coincident with the upper horizontal
of fig. 6, then it is easy to see that the two dotted horizontals must coincide,
and the line I;/I; on the tracing paper will coincide with the “‘reflected
curve”’.

It follows that the second part of the curve in fig. 6 must be the same as
the curve on the tracing paper, since they are both derived by analysing
the same curve by the same analyser between the same limits. And thus
the portion of the curve above the dotted horizontal is similar to the
portion below, and similarly situated with respect to the point of inter-
section with this horizontal; they stand in the proportion of the two
subtangents.

The same result holds for great interpolar lengths, allowing for the
approximation made in obtaining equation (16).

It follows from the geometrical symmetry of the two parts of the curve,
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that the time taken for 0 to attain 0, is a constant multiple of the time taken
to attain the transitional value, this constant being

1/h or 2/(1+h) for short or great lengths.

Consequently the strength duration curve has the form

Rt 1+,

70:1—6 «  or =l—¢ 2= | (19)

~ld~

where I is the current and J, the rheobase.

This is the condenser formula of excitation which has been proposed
countless times. Evidence is rather conflicting as to its accuracy, but on
the whole it is probably a good approximation to the experimental data.
Where the present theory differs from the classical condenser concept is
that the time constant of the physical process o is significantly smaller
than that of the excitation process.

A more striking difference is seen in the curves of the way that 6 develops
under the action of a constant current. According to the condenser theory
all curves should run as do those infig. 6, below the transitional value, and
excitation should occur when this value is attained. Exactly this has been
described by Bishop (1928), who was the first to investigate the matter
by the method of superposed shocks. Unfortunately he restricted himself
to subrheobasic currents, which do not exhibit the characteristic inflexion,
and differ from the condenser theory expectations only in that a just
subrheobasic current requires a moderate shock to be superposed, and not
an infinitesimal one. This Bishop found, but explained it away by an
alleged property of his circuit which appears to be inconsistent with
Kirchoff’s laws. Erlanger and Blair (1931b) repeated the observation and
disproved, for their circuit, Bishop’s explanation. They were chiefly
interested in questions of accommodation to a polarizing current and also
confined themselves to subrheobasic currents. Their curves which plot,
for the most part, action-potential heights, are not strictly comparable
with the curves of the present analysis, but in a general way they agree
over short durations where accommodation is not significant.

At the same time, but unaware at first of their investigations, I made
a number of similar observations, much cruder in method, but extending
into the range of super-rheobasic currents. The curves obtained showed
the inflexion as in fig. 6, and were obviously inexplicable on the simple
classical theories. I was unwilling to publish these without being able
further to explain their significance, and merely mentioned the matter
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in a short note (Rushton 1932) wherein the curves are seen to be extremely
similar to those of fig. 6 plotted the reverse way up. More detailed discus-
sion of these and related results will be presented in a separate paper.

c—Condenser Discharges

The condition that a condenser discharge should be just threshold is
easiest established from the geometry of fig. 7, where 4 and B are two
exponential curves asymptotic to RS whose ordinates EP and R are in
a constant ratio. OPS is the tangent at P, hence from the property of the
exponential RS the subtangent is constant. Thus from similar triangles
0@ is also constant and independent of the position of P.

R S
P
O Q
‘A B
Fia. 7

Now the “reflected curve” in the graphical analysis of a condenser
discharge is an exponential of the form B, and hence it is clear from the
construction, that if the curve of 6 in the second range of analysis starts
by lying on A4, so situated with regard to B that O = subtangent of the
second analyser, it will continue to trace out 4 indefinitely. Obviously
this is the threshold condition since the slightest deviation on either side
of B will cause the curve of 6 quickly to diverge much farther.

We thus conclude that the utilization period of a threshold condenser
discharge is the full period of the discharge. This is not experimentally the
case. There is uncertainty as to the exact experimental relation but agree-
ment that an appreciable fraction of a slow discharge may be cut off
without affecting the efficacy. Three factors at least may enter into this
divergence from the theory. Conditions are nearly always slightly super-
threshold and in this case the utilization period is very considerably
diminished. Measurements are not usually made with electrodes very
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close together, and so the theoretical results are invalidated by the approxi-
mation introduced into equation (16). Accommodation will diminish the
utilization period. According to the recent results of Fabre (1933) a con-
denser continues to act until its voltage has fallen well below rheobasic
voltage, but not to zero, it therefore fits the present theory as modified
by accommodation, etc. It will not, however, fit the classical condenser
theory, according to which a subrheobasic intensity can never be present
at the instant preceding excitation.

The voltage-capacity relation for threshold condenser discharges has
been investigated by countless workers; the recent experiments of Hill
(1936b) are probably the most accurate. He found that the relation fitted
precisely the theoretical curve obtained on the classical condenser theory,
hence it is important to find what curve is to be expected upon the present
theory. Unfortunately the working, though straightforward, is rather long,
and I shall therefore merely mention the method and quote the result.

Taking the case of large interpolar distance, as in Hill’s experiments,
we introduce into (14) ¥, for I, and Ve=%# for I, where 3 is the time constant
of the condenser discharge. Putting X, zero we obtain the value ¢, when
0 = 0,4/h. Now introducing the threshold conditions of fig. 7, we may
eliminate ¢, and obtain

14 1 gl B a l—h
o

When A = 1 this reduces to Hill’s formula.

Table I shows the result of computing the value of loglo(;) for various
0

values of loglo(g) where & = 0-75. The third line gives the value of logm(;)
0/
according to Hill’s formula, where V; is the same in the two cases, but in
the second o has been replaced by 2c./(1+4). It is seen that the two curves.
never differ by more than 0-026 and thus the results of Hill’s experiments.
fit the present theory as accurately as they do the simpler formula which

TasrLe I
Logyo(f/) 2 1 0 -1 -2 -3
Logyo(V/V,) (present 0-02 0-11 0-44 1-134 2-07 306
theory)
Log,o(V/V,) (Hill’s 0-02 0-12 0-46 1-160 2-07 3-06
theory)

Vol. CXXIV—B. ®
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he applied. Fabre’s results, on the other hand, certainly favour the present
theory.

The time constant 2a/(1+7%) of the voltage-capacity curve (Hill’s k)
is interpreted differently on the two theories. According to the condenser
theory this is the constant of the charging process in the nerve, but on the
present theory a is the charging constant. The same difference was found
above (19) in the case of constant current stimulation. According to the
present theory, therefore, a nerve should have the same form of curve both
for physical charging and for excitation, but the latter should have a some-
what longer time constant. Exactly this result has been found by Harris
and Rosenberg (1935) if the development of a given electrotonic potential
be regarded as a measure of the physical charging. Since, however, the
assumptions of the present theory require that the charging of the membrane
should affect infinitesimally the electrotonic potential, it is perhaps unjusti-
fiable to claim support from Harris and Rosenberg’s evidence. However,
Katz (1937) has found that the charging rate, as measured by the exponential
decay in the excitation remainder following a single weak shock, corre-
sponds to the rate found by Harris and Rosenberg and is considerably
smaller than the constant derived from voltage-capacity excitation curves.

d—Evaluation of Constanits

We are now in a position to assign numerical values to the constants of
the foregoing equations. From equation (9) we have

hL

a(l—nh)’

where v = velocity of conduction = 30 mm./msec. at 20° C.

L = length constant for nerve in air = 3 mm. (Rushton 1934).
20

Tih = Hill’s k£ = 0-34 msec. at 20° C. (Hill 19365).

Substituting the above values we obtain
h =075, o =0-3msec.

This is the value which has been assumed for 4 above in making approxi--
mations. i
The Safety Factor (10) = 17

The Liminal Length (8) = — Llog,h = 0-86 mm.

As it happens this is about the distance between one Node of Ranvier
and the next.

= 3.
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2—SPATIAL CONSIDERATIONS

If the current is led to and from a nerve by conductors which are not
small compared to the nerve trunk, we may assume that the current is
distributed around each fibre with radial symmetry. The current then
passing across the sheath is given by equation (2) where ¥ is put zero.
This formula is essentially the same as the one I put forward (1928) for
nerve in fluid, and showed to satisfy certain variations in the spatial distri-
bution of stimulus. The constant L, deduced in the first place from excita-
bility measurement, should have the physical significance \{R/(r;+75)}.
This comparison has been made (Rushton 1934), and, though the accuracy
of the experiments was not very great, there was no detectable difference
between L as found by resistance and by excitability measurement. The
present theory, therefore, appears to account for the general spatial as
well as for the general temporal aspects of excitation. Three qualifications,
however, must be made.

First, the value of L is assumed to be the ratio of purely ohmic resistances.
But we know that nerve has capacity, and R is presumably less for brief
than for longer shocks. I have in fact found that L is less with briefer
stimuli, and several workers (Cardot and Laugier 1914; Bouckaert and
Katz 1935, discussed by Hill (19366)) have found that the time constant
of the strength-duration curve is less with short than with long interpolar
lengths, which is another way of expressing the same thing. As we have
seen (19), even excluding capacity, some difference in time constant is to
be expected with great or small interpolar lengths, from the different
equations applicable in these two cases. But the effect thus deduced is
small, and the sense opposite to that observed.

The second qualification is due to the connective tissue sheath which
deflects the current in a manner distinctly appreciable at short inter-
electrode distances.

The third refers to tripolar electrodes. As has been shown in (18), in
the symmetrical case, if the distance between adjacent electrodes is less
than

Lloge(}%&é) = 0-5 mm. (approx.),
propagation cannot take place. This result may be related to the well-known
observation of Pratt (1930) and Gelfan (1930) that a micro-electrode
intimately applied to a single muscle fibre gives rise to a localized contrac-
tion which will not propagate. Conditions increasing the length excited

R 2
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allow of propagation. Now the current leaving the fibre at the micro-
electrode must enter it elsewhere and in fact it enters through the regions
just either side of the electrode, thus forming a system not unlike the
tripolar arrangement from which (18) was deduced.

Two other characteristics of the localized contraction in the basihyoid
membrane, mentioned by Kato (1934), support the present interpretation.
First, whenever the localized contraction spread more than 5mm., it
propagated throughout the whole fibre. Second, the localized effect was
less prominent in fresh muscles than in those kept some time in Ringer’s
fluid, or especially those narcotized. Thus, conditions lowering the Safety
Factor, as we shall deduce below in (21), increase the liminal length, and
the phenomena localized within it.

According to the assumption of an action potential persisting indefinitely,
it is obviously impossible for the impulse to be propagated in one direction
only from the point of stimulation, for, as the active length becomes great
enough, the region on the other side of the electrode will propagate. This
does not follow, however, if we take into account the brief duration of the
action potential. If the cathode is far from another electrode, conditions
will be symmetrical on either side, but if the anode is near, the initial propa-
gation (as we have seen) will be entirely into the extrapolar region. At the
moment when the stimulus is removed, propagation will continue into the
extrapolar region which is still cathodally charged, but hardly in the other
direction where the charge is still anodal. Thus, in a short while, when the
first stretch has become inactive, the new active stretch in the extrapolar
region will be considerably longer than the new stretch in the interpolar
region. And if the former was barely sufficient to continue propagation
(which is the threshold condition) the latter will be insufficient, and
propagation will occurin the extrapolar direction only. This will only happen
with short interpolar distance and threshold strength (unless we consider
very strong currents with the classical anodal block).

3—ErLECTRIC RESPONSE

Any satisfactory theory of nerve activity should describe and if possible
explain the form of the action-potential wave. In the present exposition
this whole matter has been sacrificed for the sake of a relatively simple
treatment. If the theory turns out to be of value, this is the direction in
which it will most need development.

One further matter in connexion with the electric response, however,
needs consideration. Should an active stretch just less than the liminal
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length give rise to an appreciable action potential? Many workers have
looked for and failed to find an action potential resulting from a just
subthreshold stimulus. Blair and Erlanger (1936a), considering just such
a possibility as is worked out in this paper, conclude that the action
potential associated with an active length less than liminal cannot exceed
2 9, of the full spike.

To find the value to be expected on the present theory we note that,
in the absence of external stimulus, the stimulation at X, due to the active
region from — X; to X, is

X+ X,
K(1—-e L),

where K, is the stimulation when X,+ X is great, i.e. the stimulation due
to a full-grown impulse. But if F is the Safety Factor, then by definition
K, /(F +1) is a stimulation which will barely propagate, and is thus equal
to the stimulation produced by the liminal length X.

X K
Thus K(l—e L) = Fiﬁ’
Z 1
L — —
el =1 +5 (21)

But the action potential from the mid-point of an active region of length
X is
X
Kz( l1—e 2L)>

where K, is the potential from an active region extending far in each direc-
tion. Hence, when X is the liminal length, the ratio of the “liminal action
potential” to the maximum action potential is

_% 1\-%
l—e :]'_(HF) . (22)

Now in the section ““Evaluation of Constants” the safety factor came to
3, which when substituted in (22) gives the liminal action potential as
13-5 9%, maximal—a value far too great to have escaped observation by
Blair and Erlanger. On the other hand, the safety factor is certainly
greater than 3. Conduction early in the refractory period and in anodal
block suggest that 10 is a better approximation (Hodgkin 1937) and
substituting this in (22) gives 4-7 %, maximal for the liminal action poten-
tial. Moreover, it can easily be shown that if this value is approximately
true and the stimulus is % 9%, below threshold, then the resulting action
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potential expressed in terms of maximal will also be # 9, less than in the
threshold case. Thus a 97 9, threshold shock in the case above would
cause an action potential only 1-7 % maximal, and be within Blair and
Erlanger’s limits of error.

Since the excitation of the liminal length appears to give rise to an action
potential too small to be recorded, and since the velocity of propagation
in these circumstances is practically zero, a finite latent time will elapse
before the action potential reaches a visible size. This latency has been
found by Blair and Erlanger (1936a), but the capacity of the tissue must
also play a large part, as they suggest.

The present theory will never stand upon a firm basis until a sub-
threshold shock has been shown to leave a localized action potential, and
to be followed by a refractory period. The treatment in this paper is too
simplified for quantitative estimates to carry much weight, but it does
appear possible that the liminal action potential may lie below the limits
so far recorded, but that a small extension of those limits will reveal it.

4—ACCOMMODATION

Hill (1936a) and Solandt (1936) have shown that the relative inefficacy
of currents of long duration is accurately accounted for by assuming that
the threshold for excitation is not constant, but rises according to a first
order differential equation. It is possible to interpret this by supposing
that there is some polarizable structure in series with the excitable element,
and that the observed inefficacy of slow currents is due to their partial
neutralization by the polarization currents.

This concept may be applied equally to the present theory. I have
recently shown (Rushton 1937) how to use a graphical analysis to solve
Hill’s equation for the effect of accommodation, and this same method
may be applied in the two ranges of graphical analysis in the present paper,
assuming that a nerve accommodates to its own action potential in the
same way as to an applied stimulus. It is obvious that in this way accom-
modation may be brought within the scope of the present theory. This has
not been included in the Mathematical Section, however, partly for sim-
plicity, but partly because there is an altogether different phenomenon
which must also be considered.

If the action potential does not continue indefinitely, but only for some
2 msec., an adequate stimulus must not only be able to raise to activity
the liminal length, but it must do this rapidly, otherwise the region first
excited will already have become refractory before propagation has reached
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the liminal length. Now the classical idea of accommodation was that
unless the critical polarization was accomplished within a brief time, the
strength of stimulus had to be greatly increased, so we may ask whether
accommodation can be explained entirely on the basis of the refractory
period of the first excited portion of tissue.

That refractoriness and accommodation are connected is strongly sug-
gested by the comparisons of Erlanger and Blair (1931a) between the
relative refractory period and the post-cathodal depression following a
single subthreshold shock. But refractoriness can hardly explain the anodal
excitation at the opening of a constant current, and refractoriness is, 1
suppose, still present in a citrated nerve where accommodation is practically
absent.

It therefore appears that two distinct phenomena may enter into accom-
modation, first, the refractoriness of the portion of nerve first excited, and
second, the polarization of some structure by both the stimulus and the
subthreshold action currents. The relation between relative refractoriness
and post-cathodal depression may thus have a twofold basis, for the latter
may be partly caused by the localized refractory period, while the propagated
refractory period may be due in part to polarization from the action current.
We should thus expect the post-anodal enhancement following a single
just subthreshold shock to differ in shape from the post-cathodal depression,
assuming the former to be uncomplicated by a localized activity followed
by a refractory period. The effect at the cathode should therefore show
a greater and more prolonged enhanced period followed by a more marked
depressed period. This difference is seen in fig. 7 of Erlanger and Blair’s
paper.

Discussion

The present theory has, for simplicity, made two very serious errors in
assumption. First, the nerve is taken as non-capacitative, and thus all
the temporal aspects of electrotonus cannot be considered. Second, the
action potential is assumed to rise instantly to its full value and persist
indefinitely, consequently considerations relating to the form of the
observed wave cannot apply. In addition these two erroneous assumptions
affect to some extent the quantitative validity of all the conclusions of this
paper, as has been pointed out in many places above. The results must also
be modified by considerations of accommodation and localized refractory
period (as just discussed).

Finally, it must be stated that there are other and quite different sets of
assumptions which will give, in a general way, most of the results of this
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paper. The value of the present assumptions is that they are necessary
deductions from the generally accepted theories of excitation and propaga-
tion.

In spite, however, of its errors and limitations, the theory has something
to its credit. It yields, in a fairly manageable form, the results of stimulation
with currents of any temporal form whatever, applied in any spatial distri-
bution whatever. It describes in a quantitative and verifiable way the pro-
cess both of excitation and of conduction. If we are given the velocity of
conduction and length constant L from physical measurements, and also
in given circumstances the rheobase [, and time constant (Hill’s k), we have
all the constants required for the entire working of the theory. Of these
four constants only I, and & are arbitrary, the other two are physical
measurements, thus, in spite of its scope the theory has no more arbitrari-
ness than was formerly required to describe the strength-duration curve
alone. One may even hope that, with the introduction of assumptions
as to capacity into the present theory, the constant £ may be deducible
from physical measurements upon charging rate.

With regard to excitability relations, the theory will describe the
strength-duration and voltage-capacity curves, with an accuracy as great
as that of the experiments, and will account for the results of superposing
shocks in a way that invites attention.

The chief claim of any theory, however, lies in its suggestions for further
investigation. To this end the present ideas have been put forward with as
definite a physical significance as possible. In this way the concepts
become sharper, more provocative to those inclined to attempt disproof,
more clearly verifiable for those attracted. The theory offers suggestions
for experimental correlation over a wide field, and if this is carried out,
our knowledge should be appreciably extended.

The ideas developed in this paper have arisen largely out of informal
discussions with Mr. A. 1. Hodgkin, for whose criticisms and suggestions
it is a pleasure to express my indebtedness.

SUMMARY

1—We assume that a certain depolarization of a nerve at a point is the
necessary and sufficient condition that an element of action potential
be generated at that point, and that propagation results from the stimu-
lation of the inactive region in front of the propagated wave by the spread
of the action current. It follows that excitation is inadequate unless it
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activates a sufficient length of nerve to give an action current big enough
to propagate.

2—In Part I of this paper the matter is worked out on an over-simplified
scheme. The “ Mathematical Section ” is separated from the “ Assumptions
and the “Conclusions from the Mathematics”’, so that those not interested
in the technical treatment may yet see in summary form both what is
assumed (p. 212) and what is concluded (p. 227).

3—In Part I the theory is applied to a selection of the known observa-
tions upon excitability. The strength-duration curve, the voltage-capacity
curve, and the effect of two successive shocks, are satisfactorily described,
including certain aspects which will not fit the classical theories. The
spatial relations of excitation are also satisfactorily described, including
an explanation of the non-propagated contraction arising from micro-
stimulation of single muscle fibres.

4—The theory, though too simplified in the present form, suggests a large
number of experiments, in the light of which further development should
be possible.
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