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In an excitable medium, wave breaks are essential for spiral wave formation. Although wave breaks can
result from collisions between a wave and an obstacle, it is only when the resultant wave fragments separate
from the obstacle~wave-front–obstacle separation! that a spiral wave will begin to develop. We explored
collisions between a piecewise linear obstacle and an incident wave front while varying the excitability of the
media and the angle between the linear obstacle segments. Wave-front–obstacle separation was observed to
occur within the small boundary layer of the order of the wave-front thickness. Conditions for wave-front–
obstacle separation were determined by the relationship between reaction-diffusion flows within this boundary-
layer region. We developed a theoretical characterization of the boundary-layer region that permits estimation
of the critical values of medium parameters and obstacle geometry that define the transition from wave-front–
obstacle attachment to wave-front–obstacle separation. Theoretical predictions revealed good agreement with
results of the numerical simulations.@S1063-651X~96!00707-6#

PACS number~s!: 47.32.Cc, 87.22.2q, 82.40.Ck, 87.10.1e

Wave propagation in many chemical and biological media
can be described in terms of a nonlinear reaction-diffusion
equation@1#. Waves are created by a stimulus that switches a
small portion of the medium from a ‘‘rest’’ state to an ‘‘ex-
cited state.’’ If the stimulus is below a certain threshold,
either no wave is created or the wave collapses. If the stimu-
lus is larger than this threshold, a wave propagates away
from the stimulus site and then dies at the boundary of the
medium. However, if the wave is fragmented~broken!, per-
haps secondary to a collision with an unexcitable obstacle,
there are two possible outcomes: either the wave fragments
maintain contact with the obstacle boundary@Fig. 1~A!# or
the fragments separate from the obstacle boundary@Fig.
1~B!# forming a spiral wave similar to that observed in
chemical media@2# and in cardiac tissue@3#. Although the
evolution of wave breaks following wave-front–obstacle col-
lisions has been studied numerically@4–8# and experimen-
tally @9,10#, the conditions that determine the subsequent fate
of a wave fragment remains unclear.

For many excitable media including cardiac tissue, the
diffusion fluxes coupling neighboring elements of excitable
media reside within the wave front of thicknessL f which is
much smaller than the length of the excitation wave. The
dynamics of such waves can be described by the kinematic
theory when the wave-front radius of curvature is larger than
both the wave-front thickness and the distance between the
wave front and wave back@11#. For a broken wave, the local
radius of curvature at each tip is comparable to the wave-
front thickness and much smaller than the length of the wave
itself. Consequently analysis of the tip movement of a re-
cently fractured wave is beyond the assumptions of the kine-
matic theory.

Seeking a more comprehensive understanding of a
mechanism of wave tip motion following the wave-front–

obstacle collisions, we focused on developing a different ap-
proach which permitted us to describe the behavior of the
boundary layer between a piecewise linear obstacle and a
colliding excitation wave. The main idea behind our ap-
proach was to partition this boundary layer into small regions
and analyze the fluxes that flowed between the wave-front
regions and the adjacent ‘‘rested’’ regions. Using this strat-
egy, we found that the transition between wave-front–
obstacle separation and wave-front–obstacle attachment de-
pended on a critical balance of the reaction-diffusion flows
within a boundary layer of the order of the wave-front thick-
ness.

Numerical studies of wave-front–obstacle interactions
demonstrated that the possibility of wave-front–obstacle
separation occurred during the initial moments of front for-
mation at the obstacle boundary and was influenced by the
medium ‘‘excitability,’’ i.e., the magnitude of a perturbation
required to initiate a propagating wave@6#.

Here we consider the nonlinear reaction-diffusion equa-
tions of the FitzHugh-Nagumo class
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where u(x,y,t) is a dimensionless function similar to the
transmembrane potential in a biological excitable cell and
V(x,y,t) is a dimensionless function similar to a slower re-
covery current. Using this electrical analogy, we consider
reaction-diffusion fluxes to be the flow of a charge~current!
down a potential gradient. Excitability is determined by the
nonlinear functionf (u) that represents the reactive proper-
ties of the medium and to some extent by«, the ratio of fast
to slow time constants. We considerf (u) as a piecewise
linear function similar to the current-voltage relationship of a
nonlinear oscillator@Fig. 2~A!#. The slope of this functionl
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controls one aspect of excitability by determining the maxi-
mum current that is available to excite adjoining regions of
the medium: larger values ofl result in a more excitable
medium while smaller values ofl result in a less excitable
medium @Fig. 2~B!#. Excitability is also influenced bym1,
m2, andm3, the zeros off (u) with respect to the equilibrium
value of the recovery variableVeq . A highly excitable me-
dium is determined bym22m1!m32m1 . The factorsg and
«, are relaxation parameters and«!1.

We consider several additional properties of an excitable

medium that are essential for our analysis: the critical re-
gion LD which is the minimum region of the medium that
must be excited before a wave front can avoid collapsing
@Fig. 3~A!#; and the critical value ofV, Vcrit associated with
wave-front propagation with a velocity of zero@Fig. 3~B!#.
The critical excitation regionLD is related to the minimal
wave-front thickness of a stationary propagating wave,
whereLcrit is the wave-front thickness associated with the

FIG. 1. Panels A and B show the computed temporal evolution
of an excitation wave~left to right, top to bottom! for different
excitabilitiesl following the collision with an unexcitable obstacle.
We solved the reaction-diffusion system@Eqs.~1!, ~2!# numerically
with no-flux boundary conditions at the medium boundary and ob-
stacle surface. We used the implicit locally one-dimensional frac-
tional step difference scheme@14# with a second order approxima-
tion on the space grid intervalDx and a first-order approximation
on the time grid intervalDt. We usedDt50.2 andDx5Dy50.25
for a 3003300. The medium parameters were«50.01,g57,m150,
m250.85,m353.2,a52.76. For these parameters, the critical value
of l at the transition from wave-front–obstacle attachment to wave-
front–obstacle separation waslcrit50.86. In panel A,
l50.91.lcrit , and this sequence shows that as the wave passes the
obstacle, wave-front–obstacle attachment is maintained and even-
tually the wave propagates toward the medium boundaries and dies.
In panel B,l50.77,lcrit and it is seen that as the wave front passes
the end of the obstacle, there is an insufficient charge within the
wave front to maintain wave-front–obstacle attachment. Conse-
quently, as the wave passes beyond the obstacle, the wave front and
the obstacle separate~the wave tip is ‘‘pulled’’ from the obstacle!
with subsequent formation of a spiral wave.

FIG. 2. Panel A illustrates the null clines of the reaction-
diffusion system. We consideru as similar to the transmembrane
potential of an excitable cardiac or nerve cell,f (u) is similar to the
current-voltage relationship of the cellular excitation process andV
is similar to the slow recovery current. The functionf (u) is a piece-
wise linear function, where the slope of each linear elementl refers
to the rate of the fast excitation process and influences media excit-
ability. The slopeg refers to the rate of the slow recovery process.
Panel B illustrates the relationship between the medium excitability,
as determined byl, and the excitation wave. The potentialu(x) is
shown for the initial condition~t50, rectangular pulse! and at four
later times. An initial condition ofv(x,t50)5m2 for a short stimu-
lation region. At subsequent times, the potential can be seen to
increase in amplitude~tom3! as well as propagating away from the
stimulation site. For high excitabilityl51.0 the wave develops
more rapidly and propagation velocity is greater than for the smaller
valuel50.75.
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zero propagation velocity@12#. The critical value of the re-
covery currentVcrit occurs when the area off (u) betweenm1
andm2 is equal to the area off (u) betweenm2 andm3 @11#.

Figure 4 illustrates the temporal evolution~panels 1–6! of
a wave-front–obstacle collision leading to a wave-front–
obstacle separation as the wave passes the end of the ob-
stacle. Panels 1–3 reveal curling of the wave front around
the corner of the obstacle and extension of the wave-front tip
adjoining the obstacle surface. Tip extension temporarily
halts at the corner of the obstacle~panels 3 and 4! while the
rest of the wave front continues to propagate. During the
time that the wave tip is developing near the corner, the
wave back approaches the tip region~panels 4,5!. Only after
the wave back reaches the end of the obstacle does the entire
wave pull away from the obstacle corner~panel 6!.

Focusing on tip formation and the movement seen in pan-
els 3–5~Fig. 4!, we see that the incident wave separates from
the obstacle when the portion of the wave-front tip adjacent
to the corner of the obstacle has zero velocity oriented par-
allel to the obstacle boundary. Under conditions of zero ve-
locity, the wave-front thickness is not that of a stationary
propagating waveL f but is equal to the smaller critical value
of the wave-front thicknessLcrit described above. The wave
front at the obstacle corner shown in panels 3 and 4 forms a
thin ~relative to the lengthL of the whole wave! boundary
layer with thickness on the order ofLcrit which separates the
excited and unexcited portion of the medium near the ob-
stacle corner.

In order to simplify the analysis of the diffusion fluxes
within the boundary layer we discretized it with squares of
orderLcrit which formed a piecewise rectangular approxima-
tion of the boundary layer with a characteristic curvature
,1/Lcrit ~Figs. 5, 6!. We assumed that the spatial potential
gradient (m32m1)/Lcrit was constant within the boundary

layer during its formation timeT while the boundary-layer
areaAL and perimeterPL increased as a step function of time
as shown in Figs. 5~D!, 6~C!. The accuracy of this approxi-
mation is of the order of«2;~Lcrit!

2/~L!2 in space and« in
time.

Whether the wave front ‘‘sticks’’ to or separates from the
obstacle boundary depends on what we call a charge balance
derived from the integral form of Eqs.~1!, ~2! obtained by
averaging them in time overT

CB5QS2QL , ~3!

where QS represents both the ‘‘source’’ charge available
within the incident wave front of lengthL f and the charge
developed by the reaction within the boundary layer of
length Lcrit and QL represents the ‘‘load’’ charge require-
ments that must be overcome in order to ignite the boundary
layer. The diffusive charge that flows from the wave-front
regionAS is determined by the time average potential gradi-
ent between the wave front [u5(m11m3)/2] and the bound-
ary layer (u5m1) so that

QSD5AS~m32m1!/2, ~4!

whereAS;L f
2 is the area of the incident wave front adjacent

to the obstacle surface. Due to the near zero velocity of the
boundary layer, recovery currentDV5(V2Veq) develops
within the boundary-layer region of areaAL with the same
time scale as the excitation process@13#. AssumingDV to be
equal to ~Vcrit2Veq! and constant overT, this amount of
charge must be offset by the reaction part of the source
charge described by

FIG. 3. Panels A and B demonstrate the relationship between the critical values of the recovery currentVcrit minimal excitation length
LD for propagation of an excitation pulse and the front thicknessL f . Panel A illustrates the sensitivity of successful propagation with respect
to the size (nDx) of the excited region. The rectangular pulse represents the initial condition. When the length of the excited regionL,LD
the excitation pulse collapses~top of panel A,L,LD! and when the length of the excited regionL.LD the excitation pulse grows and
propagates away from the stimulation site~bottom of panel A!. Excitation of the critical lengthLD ~panel A, middle! results in formation of
a nonpropagating excitation pulse of minimal thickness 2Lcrit . Panel B illustrates the effect of the recovery current on propagation of a
trigger wave~«50!. ForV,Vcrit , excitation results in an expanding wave away from the stimulation region~top curves!. WhenV.Vcrit the
initial excitation results in a collapsing wave~bottom!. WhenV5Vcrit the resulting pulse does not propagate and this condition reflects a
perfect balance between the reaction and diffusion charges feeding the front region and the loss of charge into the adjacent rested medium.
In this case, the wave front thickness is equal to 2Lcrit as shown in panel A~different scale!.
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QSR5AL~Vcrit2Veq!, ~5!

whereAL;L crit
2 the time average area of the developing load

boundary layer.
The load charge requirement is defined as the charge that

leaks from the perimeter of the boundary layer,

QLL5PL~m32m1!/Lcrit , ~6!

where PL;Lcrit is the time average perimeter of the load
boundary layer exposed to the adjacent medium at equilib-
rium conditions. With these components we can write the
equation forCB as

CB5QSD1QSR2QLL,

CB5AS~m32m1!/21AL~Vcrit2Veq!2PL~m32m1!/Lcrit .
~7!

In order to remove the dependencies ofAS , AL , andPL on
the wave-front lengthsL f and Lcrit we divide and multiply
each coefficient by its respective measure. After substituting
the values ofL f

2, L crit
2 andLcrit from Appendix A into~7!, we

get
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, ~8!

which describes the balance between the source charge and
the charge required to excite the boundary-layer region. The
area and perimeter functions are determined by the angle of
the obstacleu relative to the wave front as described in Ap-
pendix B.

Formula ~8! indicates that the transition between wave-
front–obstacle separation and wave-front–obstacle attach-
ment, i.e., whereCB50, can be altered by varying any of the
medium parameters. WhenCB.0, there is sufficient diffu-
sion charge within the wave front and reaction charge within
the boundary layer to overcome the charge that leaks from
the boundary layer resulting in extension of the wave tip.
WhenCB,0, there is insufficient wave-front charge to over-
come the demands for wave tip extension, resulting in wave-
front–obstacle separation. In terms of the wave velocity,
whenC.Ccrit(Ccrit5Cul5lcrit

) thenCB.0, and propagation
around the corner at the wave-front–obstacle boundary suc-
ceeds while whenC,Ccrit , thenCB,0 and local propaga-
tion at the corner of the obstacle–wave-front interface fails
and the wave separates from the obstacle.

For a range of medium parameters~«,g,a,l,u! we can use
CB50 to determine critical contours~e.g., as a function of«
andl! that separate regions of wave-front–obstacle attach-
ment from regions of wave-front–obstacle separation, i.e.,
whereCB is equal to zero.

We evaluated the accuracy of the critical propagation ve-
locity, Ccrit derived from the roots ofCB50, by comparison
with the numerical estimates ofCcrit associated with the tran-
sition from wave-front–obstacle attachment to wave-front–
obstacle separation. Figures 7~A!, 7~B! illustrates the theo-
retical predictions@we evaluated Eq.~8! with CB50, to
computelcrit and Eq.~A2! to computeCcrit# and the numeri-
cally determined values~circles, squares! for different angles
u. These experiments revealed good agreement for values of
«,0.04.

Our choice of a piecewise linear obstacle was motivated
by the desire to understand the general role of the obstacle
curvature in altering the wave tip charge balance between the
sourceQS and the loadQL . In addition to simple piecewise
linear obstacles, theoretical predictions allow us to estimate
the critical separation parameters for obstacles of an arbitrary
shape. Since we found that separation evolves within the
boundary layer which is of the orderL f , the obstacle bound-
ary can be approximated by small linear segments of the
order ofL f . The local angleu between linear segments can
be readily linked to a local curvature radiusRcurv associated
with the local angle apex

Rcurv5
L f

2 sin~u/2!
. ~9!

FIG. 4. The temporal sequence of wave-front–obstacle interac-
tion resulting in separation of the excitation wave from the obstacle
~time sequence corresponds to panel numbers 1–6!. Panels 1–3
show the initial curling of the wave front around the corner of the
obstacle and development of the wave tip~load boundary layer!
adjoining the obstacle surface. In panels 2–4, the tip remains rela-
tively stationary at the end of the obstacle while the rest of the wave
continues to propagate, thus extending the tip in the direction of the
incident wave. As the wave back passes the end of the obstacle
corner~panel 5! the tip can be seen to be fully formed. As the wave
continues to propagate, the tip eventually is unable to maintain
contact with the obstacle boundary and becomes unattached~panel
6!. The slower propagation of the tip results in curling and forma-
tion of a spiral similar to that displayed in Fig. 1~B!. In order to
demonstrate separation for a different set of parameters~compared
to those used in Fig. 1!, for this illustration we usedl50.98,
«50.03,a52.76, wherelcrit51.13.
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This equation highlights the relationship between the
wave-front properties and the curvature of the obstacle.
When the local radius of curvature of the obstacle is smaller
than that defined by Eq.~9!, then following a wave-front–
obstacle collision, wave-front–obstacle separation will occur
and a spiral wave will possibly develop.

Pertsov and co-workers@6,7# were the first to note with
numerical studies, the critical role excitability played in
events following wave-front–obstacle collision and that
events occurring within the wave front at the wave tip were

potentially important. Following these initial observations,
Agladze et al. @9# experimentally probed the nature of
wave–obstacle collisions using the Belousov-Zhabotinsky
~BZ! reagent in a medium containing obstacles. They dem-
onstrated that for a fixed angle of incidence between the
wave front and obstacle, there was a critical excitation fre-
quency ~. control frequency! where the wave-front–
obstacle separation occurred and new spirals formed. Our
interpretation is that the increased frequency of excitation
resulted in a slowed propagation and an obligatory reduction

FIG. 5. Schematic representation of the relationship between the source region within the wave front and the temporal formation of the
boundary layer following the collision between a wave and an obstacle oriented parallel to the wave velocity~u5p!. Panels A and B show
source regions~squares of areaAS52L f

2 with shading! formed by a portion of the incident wave front~wave-front thicknessL f ! adjacent to
the obstacle surface. Panel Bt5t1 shows the intermediate location of the wave front as it advances around the obstacle corner. During this
time charge flows out from the source region and forms the first portion of the boundary layer with an area 3~Lcrit!

2 equal to that foru5p/2.
While time increases tot5t2 ~panel C! the boundary layer continues to grow forming a tip sticking near the obstacle corner. The whole
boundary-layer region is approximated by a piecewise~5 squares! rectangular strip with a width equal toLcrit and an area equal to 5~Lcrit!

2.
The leading edge of the boundary layer is formed by linear segmentsKM , MN, andNQ. The propagation velocity of theKM segment is
equal to zero. The perimeter of the leading edge of the boundary layerPL and its areaAL extend as step functions oft changing in time as
shown in panel D during the boundary layer formation timet22t052Dt.

FIG. 6. Formation of a load boundary layer for the piecewise unexcitable obstacle with a right angleu5p/2 between its linear segments.
Panel A t50 shows a source region~square of areaAS5L f

2 with shading! formed by a portion of the incident wave front~wave-front
thicknessL f ! adjacent to the obstacle surface. Panel Bt5Dt shows the wave front advanced behind the obstacle corner. During this time the
charge flows out from the source region and forms the load boundary layer between the obstacle surface and the incident wave front. The
fully developed boundary layer region is approximated by a piecewise~3 squares! rectangular strip with a width equal toLcrit and area equal
to 3Lcrit

2. The leading edge of the boundary-layer region is formed by the linear segmentsKM andMN. A propagation velocity of theKM
segment is equal to zero. The perimeter of the leading edge of the boundary layerPL and its areaAL extend as step functions oft changing
in time as shown in panel C during the boundary layer formation timet12t05Dt.
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in L f until the critical value~associated with separation! was
achieved. Similarly, in studies of the interaction of a wave in
the BZ medium with a fixed obstacle of varying curvature,
Gomez-Gesteriaet al. @10# showed that varying the excit-
ability altered the critical angle at which wave-front–
obstacle separation occurred. The dependence ofCcrit on
K51/Rcurv shown in Fig. 8 is in qualitative agreement with
the experimental observations in the BZ excitable me-
dium@10#.

In conclusion, the present analysis indicates that wave-
front–obstacle separation occurs within the small boundary
layer that links the wave tip with the obstacle surface. Con-
ditions for wave-front–obstacle separation are determined by
the relationship between the reaction-diffusion flows within
the boundary-layer region which is of the order of the wave-
front thickness. The transition between wave-front–obstacle
separation and wave-front–obstacle attachment can be al-
tered by varying any of the medium parameters or the ob-
stacle geometry. The present theoretical study permits a
comprehensive determination of the critical values of the
medium parameters and obstacle geometry for wave-front–
obstacle separation, which was an open problem.

ACKNOWLEDGMENTS

We wish to acknowledge the critical assistance provided
by V. I. Krinsky, V. N. Biktashev, and A. M. Pertsov. Their
critical reviews and discussions were helpful in clarifying
our results. This research was supported in part by Grant No.
HL32994 of The National Heart, Lung and Blood Institute,
NIH.

APPENDIX A

In @12#, we derived one-dimensional~1D! estimates for
the wave-front thicknessL f , the front thickness of a wave
propagating at zero velocityLcrit , and the critical value of the
recovery variable associated with zero velocity@for a piece-
wise linear f~u! shown in Fig. 2#, Vcrit which are given by

FIG. 7. The dependence of the critical wave-front propagation
velocity Ccrit for wave-front–obstacle separation, as a function of
the model parameter« while g57 anda52.76. Solid and dashed
lines represent the analytical approximation ofCcrit wherelcrit is
the root ofCB50, and the circles and squares represent numerically
determined values. Each curve ofCcrit as a function of« separates
the plane into two regions: ~1! for wave-front velocities below the
line, a wave-front–obstacle separation occurs; and~2! for wave-
front velocities above the line, a wave-front–obstacle attachment is
maintained. Panel A illustrates this dependence for an obstacle
aligned parallel to the incident wave velocity vector~u5p!. Panel B
illustrates this dependence for an obstacle aligned perpendicular to
the incident wave velocity vector~u5p/2!. Panel C illustrates the
interpolated dependence for obstacles with intermediate angles
u5p/4 andu53p/4. The numerical experiments reveal good agree-
ment with the analytical approximation for all angles.

FIG. 8. The dependence of the critical velocityCcrit associated
with the wave-front–obstacle separation on the local obstacle cur-
vatureK51/Rcurv for different «. HereRcurv is the local curvature
radius which is given by~9! and g57, a52.76 are the medium
parameters.
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L f5sSC214l

l D 1/2,
Lcrit52s/Al,

Vcrit2Veq5l~m22m1!
a21

2
,

a5
m32m2

m22m1
,

s5 ln@M21~m32m1!#, ~A1!

whereC is the pulse velocity in a 1D excitable cable@for
f (u) shown in Fig. 2# andm1, m2 andm3 are the zeros of
f (u) with respect toVeq . For the 2D boundary layer analysis
used here, we assume the 1D front parameters to be equal to
the 2D boundary layer parameters.

The factors is a constant which defines the end points of
the exponential wave front which are required to estimateL f
andLcrit @12#. The factorM is a threshold that defines where
the wave-front starts (m11M ) and ends (m32M ), respec-
tively. The value of the threshold relates to a certainK-fold
change in the wave-front amplitudem32m1 . Here we used
the value s511ln2 which is associated with ane-fold
change.

Under the conditions when the wave-front thickness of
the incident wave is sufficiently large~high excitability! one
can estimate the incident wave velocity from that of a trigger
wave, a wave that propagates while the slow recovery cur-
rent remains at the equilibrium valueVeq~«50!. For the
piecewise linearf (u) shown in Fig. 2 this velocityC0 is
given by@12#

C05~a21!Al/a. ~A2!

When the medium properties are near the separation–no
separation boundary, it is necessary to adjust for the influ-
ence of the slow recovery currentV on wave-front velocity.
It was shown in@12# that the recovery current increases dur-
ing the front formation timet5L f(C0)/C0 by an amount:
DV5«g(m32m1)t. Using ~A1! and~A2! and rewritingDV
in terms of medium parameters we get

DV5«gs~m32m1!
a11

l~a21!
. ~A3!

From this equation, we estimate new rootsmi* of f (u) with
respect toVeq1DV which provides a value of excitability
a* .

a*5~m32m22DV/l!/~m22m11DV/l!

5$a2DV/@l~m22m1!#%/$11DV/@l~m22m1!#%.

~A4!

Expanding $11DV/@l(m22m1)#%
21 and keeping only the

first-order term, the adjusted velocity can be written using
Eq. ~A2! as

C5C02z« where z5s
g~al!23/2

2

~a11!4

a21
.

~A5!

APPENDIX B

We will seek functionsAS , PL and AL in terms of a
biquadratic polynomial on ^S&5S(u)/L f

2, f i(u)5Fi
1Gi^S&21Hi^S&4, whereS~u! is the area of the source re-
gion as a function ofu. CoefficientsFi , Gi andHi are un-
known constants~i51,2,3 forAS , PL andAL , respectively!
which can be determined, for instance, from the charge bal-
ance for three particular angles:u50, u5p, andu5p/2.

We assume that for intermediate angles such asp/4
,u<3p/4 and 3p/4<u<p, 0<u<p/4, ^S& is directly pro-
portional to the tangent function: tan~p/22u! and tanu,
respectively. Taking this into consideration,one can deter-
mine the equation for̂S&

^S&55
tan u

2
, 0,u<p/4

12
tan~p/22u!

2
, p/4,u<p,2

12
tan~p/22u!

2
, p/2,u<3p/4

21
tan u

2
, 3p/4,u<p.

~B1!

For a zero angleu the source region vanishes^S&50 since
no charge flows around the obstacle corner~the obstacle is an
infinite straight line!, consequentlyAS50, F150. For this
case an excitation wave attaches to the obstacle~straight
line! even atl50. Thus the functionsPL/Lcrit andAL/L crit

2

are of the order ofO~1! at u50 and without loss of general-
ity one can assume thatF2 andF3 are equal toLcrit andL crit

2 ,
respectively.

Figure 5 illustrates the details of the geometric consider-
ations when the obstacle is aligned parallel to the wave-front
velocity vector~u5p!. Shown is the time dependent devel-
opment of the source region~shaded squares of lengthL f at
t50 andt5t1, AS52L f

2! of the incident wave front adjacent
to the obstacle surface and the load boundary-layer regions
three boundary-layer regions shown in Fig. 5~B!, growing to
five boundary-layer regions shown in Fig. 5~C!# We assume
the boundary-layer formation time to beT52Dt @Fig. 5~D!#
and approximate the development of the boundary-layer area
as shown in Fig. 5~D! so thatAL5L crit

2 (3Dt/4115Dt/2)/
2Dt533/8L crit

2 .
Leakage of charge occurs from the perimeter of the

boundary-layer area@KMNQ in Figs. 5~B!, 5~C!#. We
approximate the development of the perimeter as shown
in Fig. 5~D! and the time averaged value of
PL5Lcrit(5Dt/4121Dt/2)/2Dt547/8Lcrit.

Figure 6 illustrates the geometric details foru5p/2 when
AS5L f

2, AL5Lcrit
2 ~Dt/219Dt/4!/Dt511/4Lcrit

2 and PL5
Lcrit~3Dt/4112Dt/4!/Dt515/4Lcrit. EquatingFi~u! with the
coefficientsAS , AL and PL in balance Eq.~7! for u50,
u5p/2 andu5p, we have

AS5L f
2~7^S&22^S&4!/6

PL5Lcrit@11~313̂ S&2249̂ S&4!/96#,

AL5Lcrit
2 @11~199̂ S&2231̂ S&4!/96#. ~B2!
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