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Common mechanism links spiral wave meandering and wave-front–obstacle separation
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Spiral waves rotate either around a circular core or meander, inscribing a noncircular pattern. The medium
properties determining the transition of meandering were found to be equivalent to those defining the transition
from wave tip separation and attachment around the end of an unexcitable strip of thickness comparable to zero
velocity wave-front thickness. The transition from circular to noncircular tip movement is analytically pre-
dicted by the balance of the diffusive fluxes within the boundary layer at the wave tip.
@S1063-651X~97!11701-9#

PACS number~s!: 47.32.Cc, 82.40.2g
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Spiral waves appear in many excitable chemical and b
logical media@1#. The spiral wave tip either rotates around
circular unexcited core or meanders, inscribing a noncircu
pattern often similar to that of a multipetal flower. Fro
numerical studies of FitzHugh-Nagumo-like models for a v
riety of medium parameters, Zykov@2# and Winfree @3#
found a distinct boundary separating meandering from cir
lar tip movement, suggesting that transitions between dif
ent modes of tip movement were dependent on certain
dium parameter values.

The transition from circular spiral tip motion to meande
ing is known to occur when the spiral tip approaches
refractory tail. The minimal distance between the spiral
and refractory tail associated with the meandering transi
and its relation to medium properties, though, is uncerta
Recently numerical studies of Karma@4# showed that mean
dering corresponds to the superposition of two rotating sp
wave solutions. He found that the reaction-diffusion field
points located on the wave front near the minimal core rad
associated with the meandering transition~determined nu-
merically! displayed quasiperiodic variations originatin
from a supercritical Hopf bifurcation. Analytical investiga
tions of spiral core stability by Kessleret al. @5# based on
kinematic theory did not confirm this behavior, probably b
cause their analysis was performed within a kinematic fram
work that differed significantly from the framework of Ka
ma’s analysis@4#. Moreover, the kinematic approach
limited by the assumption that the wave radius of curvat
is large compared with the wavelength, a condition tha
not fulfilled at the spiral tip@6#. Barkley developed a phe
nomenological model that reproduced complex spiral
movement@7#. However, based on the ordinary differenti
equation representation, this model did not describe the t
sition to meandering and did not provide a minimal co
radius associated with a meandering transition bound
since it neglected generic diffusive properties of an excita
medium.

In this paper, we show that the conditions associated w
the meandering transition are equivalent to conditions a
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ciated with the transition between wave-front–obstacle
tachment and separation following a wave-obstacle inte
tion @Fig. 1~a!#. We found that the minimal distance that th
spiral wave tip can approach its refractory tail without m
andering is of the order ofLcrit , the wave-front thickness o
a wave propagating with zero velocity. Following interactio
with an unexcitable strip of thicknessLcrit , there are two
possible outcomes. If the wave tip wraps itself around
end of this unexcitable strip, then it will meander if the str
is removed. Alternatively, if the wave tip separates from t
end of the strip, then removal will result in circular spiral t
motion. Over a range of medium parameters, this transi
can be accurately predicted by approximating the diffus
fluxes within the boundary layer at the wave tip@9,10#.

Here we consider nonlinear reaction-diffusion equatio
of the FitzHugh-Nagumo class:

]u

]t
5

]2u

]x2
1

]2u

]y2
1 f ~u!2V, ~1!

]V

]t
5«~gu2V!, ~2!

where u(x,y,t) is a dimensionless function similar to th
transmembrane potential in a biological excitable cell a
V(x,y,t) is a dimensionless function similar to a slower r
covery current. Using this electrical analogy, we consid
reaction-diffusion fluxes to be the flow of a charge~current!
down a potential gradient. The nonlinear source of charg
determined by the function,f (u), that represents the reactiv
properties of the medium. We considerf (u) as a piecewise
linear function similar to the current-voltage relationship o
nonlinear oscillator@Fig. 1~b!#. The slope of this function,l,
controls one aspect of excitability by determining the ma
mum current that is available to excite adjoining regions
the medium: larger values ofl result in a more excitable
medium while smaller values ofl result in a less excitable
medium. Excitability is also influenced bym1 , m2, and
m3, the zeros off (u) with respect to the equilibrium value o
the recovery variable,Veq. A highly excitable medium is
determined bym22m1!m32m2. The factorsg and« ~the
x:
1193 © 1997 The American Physical Society
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1194 55BRIEF REPORTS
ratio of fast to slow time constants!, are relaxation param
eters and«!1 [a5(m32m2)/(m22m1)].

In order to explore the hypothesis that no separation fr
the obstacle is equivalent to meandering, we obser
obstacle-wave interactions for a variety of model paramet
l, a, and «, in order to alter the wave-front charge whi
keeping the kinetics of recovery constant. We observed
transition from circular to noncircular tip movement as fo
lows ~Fig. 2!: starting with a spiral rotating around a larg
core ~left upper panel!, as we increased the wave-fro
charge~by increasingl!, the spiral tip rotated about circula
cores of progressively smaller radii~right upper panel! until
the tip approached the refractory tail by a critical distan

FIG. 1. ~a! shows the computed temporal sequence~from left to
right! of wave-front–obstacle interaction resulting in separation
the excitation wave from the unexcitable obstacle. The left fra
demonstrates a fully formed spiral tip, which later separates fr
the strip~right frame!. The width of the strip is of the order of th
critical wave-front thickness shown in both fragments by a t
white line bounding the tip area. Computations were perform
over a 1703170 grid using an implicit fractional-step method@8#
with Dx5Dy50.25, Dt50.2. ~b! shows the null-clines of the re
action diffusion system of Eqs.~1! and~2!. We consideru(x,y,t) as
similar to the transmembrane potential of an excitable cardiac
nerve cell,f (u) is similar to the current-voltage relationship of th
cellular excitation process, andV(x,y,t) is similar to slow recovery
current. The functionf (u) is a piecewise linear function, where th
slope of each linear element,l, refers to the rate of the fast excita
tion process and influences medium excitability. The slopeg refers
to the rate of the slow recovery process. For a 1D excitable c
and piecewise linearf (u) the basic characteristics of wave prop
gation such as pulse propagation velocity, wave-front thickness,
the minimal wave-front thicknessLcrit associated with a nonpropa
gating wave have been determined in@9,10#.
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FIG. 2. Shown are four spirals of increasing wave-front cha
as defined by the slope of the fast null-clinel. Spiral waves were
computed for«50.018, a52.75, andg57 while varying l and
were initiated by a wave break created with the initial conditio
The spiral tip was tracked by following the path of the unsta
point u5m2 , V5Veq50. Upper panels~left, l50.86 and right,
l50.885! show circular spiral tip movement. Whenl50.905, the
wave-front thickness is comparable to the core diameter and th
begins to meander~low left panel!. Whenl is further increased to
0.93, meandering becomes very pronounced~low right panel!.

FIG. 3. Shown is the meandering transition coinciding with t
wave-front–obstacle separation-attachment boundary. Spiral w
were computed for«50.018,a52.75, andg57 while varyingl.
Upper panels,l50.93 ~from left to right!, demonstrate the excita
tion wave tip, which wraps around the unexcitable strip~left upper
panel! approaching the refractory tail. This wave fragment mea
ders after obstacle removal~right upper panel!. The width of the
striplike obstacle~thin straight white line! is of the order of the
wave-front thickness~white thin layer bounding the wave tip!. As
we decreased the wave-front charge by decreasingl ~l50.86! the
wave tip separated from the obstacle~lower left panel!. This wave
fragment rotated around a small unexcited circular core after
stacle removal~low right panel!.
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When the distance was less than this critical distance, the
meandered~low panels left and right, respectively!.

In our numerical experiments the critical distance b
tween the spiral tip and a refractory tail associated with
meandering transition was always comparable to that of
zero velocity wave-front thickness,Lcrit . Figure 3 demon-
strates that if the tip approaches the refractory tail within
distance that is of the order ofLcrit ~thin white strip between
the tip and the refractory tail!, i.e., the tip is able to make
turn of diameter,Lcrit , while maintaining attachment to th
strip boundary~upper left panel! then meandering results a
ter removal of the strip~upper right panel!. Similarly, if the
charge available in the wave front is insufficient to exte
the tip around the corner of the strip~low left panel, lower
excitability,l! then the wave tip cannot approach the refra
tory tail sufficiently close. Consequently, the tip will rota
around a small circular unexcited core with a diame

FIG. 4. The coincidence of the meandering transition with
wave-front–obstacle separation-attachment boundary~a! in the ~«,
a! plane forl50.67 andg56. Squares illustrate the computed m
andering transition while circles refer to a computed wave-fro
obstacle separation-attachment boundary~solid line is a quadratic
regression:«50.02820.03a10.0087a2). Computations were per
formed for the striplike unexcitable obstacles with the width tha
of the order of the wave-front thickness@see Fig. 1~a!#. ~b! illus-
trates the ‘‘flower garden’’~tip trajectories! for points indicated in
~a! by numbers 1,2,3,4,5 fora52.3; «50.032, 0.048, 0.057, 0.065
0.075 and numbers 6,7,8,9,10 fora53.0; «50.01, 0.0117, 0.0129
0.0157, 0.0175, respectively.
tip
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.Lcrit after the strip is removed from the medium~low right
panel!.

Numerical studies demonstrated the equivalence betw
conditions for the wave-front–obstacle attachme
separation boundary and the boundary of the transition
meandering in the~«, a! plane@Fig. 4~a!# over a wide range
of medium parameters. Moreover, small changes in the
rameter« near the transition boundary resulted in a variety
flower configurations quite similar to those associated w
the cubicf (u) @2,3,7# as shown in Fig. 4~b!.

The coincidence between the meandering transition
obstacle attachment-separation transition suggests a com
mechanism for both transition processes, which is based
the balance of reaction-diffusion fluxes within a sm
boundary layer of the order of the zero velocity wave-fro
thickness,Lcrit . Recently we showed that by discretizing th
boundary layer with squares of the order of the zero veloc
wave-front thickness,Lcrit , it was possible to develop a
analytical approximation of the separation–no separa
boundary@10#. Whether the wave tip maintained the attac
ment or separated from the obstacle boundary depende

e

–

s

FIG. 5. The boundary defining the theoretical transitions
tween circular and noncircular tip motion.~a! illustrates qualitative
agreement of Eq.~3! ~in a wide range ofa! with the multivalued
meandering transition in the~«,a! plane~g56, l50.5! as described
in @2,6#. ~b! illustrates quantitative agreement within the range
a5~2.8, 3.0!. The solid line is the analytical estimation of the m
andering transition boundary determined by Eq.~3! and the circles
refer to numeric estimates.
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1196 55BRIEF REPORTS
what we called a charge balanceCB , derived from the inte-
gral form of the Eqs.~1! and~2! obtained by averaging them
within a piecewise rectangular approximation of the bou
ary layer over the wave-front formation time.CB was de-
fined in terms of a relationship between the charge availa
within the wave front, the charge required to ignite t
boundary layer, and the charge that leaks from the bound
layer into adjacent rested medium. WhenCB.0, wave-
front–obstacle attachment was maintained while whenCB
,0, wave-front–obstacle separation occurred. For a strip
obstacle one can find the medium parameters associated
the wave-front–obstacle separation-attachment boun
from the equationCB50, which is given by

F332 47

2s2

a11

a21Gl31
4~a11!3

a~a21!
l22«

4g~a11!5s

a2~a21!
50,

~3!

where s511ln2, a5(m32m2)/(m22m1) @10#. Our nu-
merical studies show that the same analysis can be applie
the transition between circular and noncircular tip motio
WhenCB,0, circular motion is expected. WhenCB.0 me-
andering is expected.

Equation~3! is in qualitative agreement with the multiva
ued meandering transition in the~«, a! plane shown in
@2,3,7# @Fig. 5~a!#. Comparison of numerical estimates of th
meandering–no-meandering boundary and theoretical
dictions of the wave-front–obstacle separation-attachm
boundary@Eq. ~3!# over a limited range ofa reveals good
quantitative agreement@Fig. 5~b!#. Numerical estimates out
side this range are limited by the series approximation u
in deriving Eq.~3! @10#.

In summary, we determined the minimal distance betw
a spiral wave tip and its refractory tail associated with
meandering transition. We have found that if the wave
approached its tail within a distanceLcrit ~wraps itself around
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the end of an unexcitable strip of the order of the wave-fr
thickness!, then it will meander if the strip is removed. Thu
we demonstrate that the transition from circular to noncir
lar spiral tip motion is determined by the same conditions
the transition from wave tip separation to attachment of
wave to the end of a thin~of the order of the zero velocity
wave-front thickness! unexcitable strip and can be predicte
from the medium properties by analysis of the bound
layer separating the spiral wave tip from the ‘‘virtual’’ ob
stacle@9,10#.

Spiral core stability studies based on the analysis of te
poral flux variations at fixed points~along the spiral core
boundary! demonstrated unstable oscillating behavior at
spiral core@4,5#. However, these analyses yielded little i
sight about the medium conditions associated with the m
andering transition and the minimal core radius~associated
with meandering transition! which are determined by a ful
solution of the original partial differential equation reactio
diffusion system. By approximating the solution of th
FitzHugh-Nagumo reaction-diffusion system Eqs.~1! and~2!
in the region of the spiral tip, we have shown that the de
cate balance between reaction-diffusion fluxes in this reg
and the surrounding boundary layer plays a major role
defining different types of spiral tip motion, thus affectin
different instabilities of the spiral wave solution at poin
near the wave tip as described in@4,5#. Recognizing that
small changes in the reaction-diffusion flux balance in
boundary layer can dramatically alter spiral tip motion pr
vides a new tool for control of spiral wave processes and
particular, control of cardiac arrhythmias.
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