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Abstract

We study several aspects of FitzHugh-Nagumo’s (FH-N) equations without diffusion. Some global
stability results as well as the boundedness of solutions are derived by using a suitably defined Lya-
punov functional. We show the existence of both supercritical and subcritical Hopf bifurcations. We
demonstrate that the number of all bifurcation diagrams is 8 but that the possible sequential occurrences
of bifurcation events is much richer. We present a numerical study of an example exhibiting a series
of various bifurcations, including subcritical Hopf bifurcations, homoclinic bifurcations and saddle-node
bifurcations of equilibria and of periodic solutions. Finally, we study periodically forced FH-N equations.
We prove that phase-locking occurs independently of the magnitude of the periodic forcing.

Keywords: FitzHugh-Nagumo, subcritical and supercritical Hopf bifurcation, homoclinic bifurcation, peri-
odic forcing
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1 Introduction

We consider the FitzHugh-Nagumo (FH-N) equations without diffusion,

du

dt
= εg(u)− w + I,

dw

dt
= u − aw,

(1.1)

where g(u) = u(u − λ)(1 − u), 0 < λ < 1 and a, ε > 0. We remark that in the existing literature, the term
”FitzHugh-Nagumo system” has been used to refer to both the models with and without diffusion.

Although equations (1.1) have been mentioned in practically every mathematical biology book [2], [8],
[12], as well as some of their aspects have been studied in different contexts, [1, 4, 9, 10, 11] there is no
detailed treatment of their dynamics from the point of view of nonlinear dynamics theory.

Our goal in writing the present paper has been to offer a detailed analysis of the FH-N system (1.1) and
to present a theoretical proof of phase-locking of coupled FH-N oscillators.

We demonstrate that the system exhibits many of the known bifurcation types, some of which are executed
in a non-typical way.

In various cases the FH-N system possesses unstable periodic solutions, which appear via subcritical
Hopf bifurcations. (The instability is probably the reason for which such solutions were not noticed in
[8], p.164.) In other cases, supercritical Hopf bifurcations occur. The Bogdanov-Takens bifurcation [7] is
also characteristic for this system. As noted below, homoclinic bifurcations and saddle-node bifurcations of
equilibria and of periodic solutions are also exhibited by this system.

It is a common practice to represent a dynamical system by its bifurcation diagram. We show that the
possible bifurcation diagrams for the FH-N equation are 8. However, because of the possibilities of occurrence
of both supercritical and subcritical Hopf bifurcations, as well as the occurrence of homoclinic orbits of the
saddle associated with the appearance/disappearance of periodic orbits, the number of possible sequences
of bifurcation events is much larger. Thus a bifurcation diagram is not always sufficiently informative about
the system.

As evidence, we present an example which possesses a richness of bifurcation events when the parameter
I is varied. The numerical experiments with the example show a sudden disappearance of two (stable and
unstable) periodic orbits, which seems to occur simultaneously near a certain value of I. A more careful nu-
merical investigation uncovers that the stable and unstable periodic orbits appear and disappear via different
bifurcations associated with the homoclinic orbits of the saddle. The careful study of the mentioned example
shows that besides saddle-node bifurcations of equilibria and subcritical Hopf bifurcations, the FitzHugh -
Nagumo system exhibits also saddle-node bifurcations of periodic orbits and homoclinic bifurcations which
occur in a very narrow interval (of the magnitude of 10−7 of values of I). In-between, the structurally unsta-
ble homoclinic orbit of the saddle converts into a heteroclinic orbit connecting the saddle and the unstable
equilibrium which further converts back into a homoclinic orbit of the saddle.

In short, from the standpoint of a “bifurcation gems collector”, the well-known, simple-looking system
(1.1) is a treasure box which, we believe, is worthwhile opening once more.

The structure of the paper is as follows.
In Section 2 we introduce a Lyapunov functional for the system, which is of help in establishing various

useful results. We use it to state global stability results for certain sets of parameter values and to prove
the boundedness of the solutions of the system. In Section 3, we carry out the phase plane and bifurcation
analysis of the system. In Section 4 we study the case when I is not a constant. Since a system of the type
(1.1) represents an oscillator (as in many cases it possesses a limit cycle ), an interesting problem is to study
periodically forced FH-N equations. Results from [5] are used to prove the existence of periodic solutions
with the same period as the forcing term. We note that our result predicts the occurrence of phase-locking,
regardless of the amplitude of the forcing term.
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2 Stability and boundedness via a Lyapunov functional

2.1 Existence and linear stability of equilibrium points

Depending on the parameters, system (1.1) can have one, two or three equilibrium points. At least one
equilibrium always exists and the number of equilibria cannot be more than three.

Let b1 = g′(ue). It is trivial to establish (noticing that b is a function of a):

Proposition 2.1. Let(ue, we) be an equilibrium point. Let εab1 < 1, then (ue, we) is locally asymptotically
stable if εb1 < a and is a repellor if εb1 > a. If εab1 > 1, then (ue, we) is a saddle point. If εab1 = 1, then
(ue, we) is unstable if εb1 > a.

2.2 A Lyapunov Functional for FitzHugh-Nagumo’s Equations

We introduce the values

T = (1 − εb1a) − 2εab2
2

9
and

S =
b2
2

3
+ b1 − a

ε

where b1 = g′(ue) and b2 = g′′(ue)/2.

Proposition 2.2. Let (ue, we) be an equilibrium of (1.1). Let

V (u, w) =
1
2
[
u − ue − a(w − we)

]2 + G(w − we), (2.1)

where G(x) = 1
4εax2[a2x2 − 4

3axb2 − 2(b1 − 1
aε)].

Let the line L be defined by L = {(u, w)|u = ue + a(w − we)}. Then,
a) V (u, w) > 0 for all (u, w) �= (ue, we) if and only if T > 0. If T ≤ 0, then V ≤ 0 in a bounded set S,

which is symmetric about the line L.
b) On L the derivative V̇ ≡ ∂V

∂u u̇ + ∂V
∂w ẇ = 0. Additionally, V̇ < 0 iff S < 0 and (u, v) �∈ L. If S ≥ 0,

there exists an ellipse ∂E, surrounding a region E such that: i) V̇ < 0 if (u, w) belongs to the complement of
∂E0 ∪ E0 ∪ L; ii) V̇ > 0 if (u, w) ∈ E \ (L ∩ E).

c) If εb1a < 1 and εb1 > a, there exists a neighborhood of the equilibrium (ue, we) which no solution
enters. If εb1a < 1 and b1ε < a, there is a neighborhood of the equilibrium which no solution leaves. These
neighborhoods can be found explicitly by using level curves of V .

d) Suppose T > 0 and S < 0. If (ue, we) is unique, it is globally asymptotically stable. If (ue, we) is not
unique, it is the only stable equilibrium.

Proof. After the transformations v = u − ue, s = w − we, and v − as = y, s = x the system can be
rewritten as

ẋ(t) = y ẏ(t) = −yf(x, y) − g1(x),

where
f(x, y) = ε(y2 + (3ax − b2)y + (3a2x2 − 2b2ax − b1)) + a,

g1(x) = −ε(b1ax + b2a
2x2 − a3x3) + x.

The line L is the one with equation y = 0.
Then

V (x, y) = y2/2 + G(x),

and
G(x) =

∫ x

0

g1(ξ)dξ. (2.2)

A simple computation yields that G(x) > 0∀x �= 0 (and therefore V (x, y) > 0, ∀(x, y) �= (0, 0)) if and
only if T > 0. The level curves V (x, y) = c, c > 0 are closed nested ovals encircling the origin.
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If T < 0, the set V (x, y) = 0 consists of (0, 0) and a closed curve, defined by

y2 =
1
2
εax2

[−a2x2 +
4
3
ab2x + 2(b1 − 1

εa
)
]
. (2.3)

If T = 0, the set V (x, y) = 0 consists of (0, 0) and another point on the y = 0 axis.
It is symmetric about the axis y = 0 and surrounds a bounded set S such that V (x, y) ≤ 0 if (x, y) ∈ S.
b) V̇ (x, y) = −y2f(x, y) and obviously V̇ = 0 on L and V̇ < 0 iff f(x, y) > 0 and y �= 0. The last is true

for all (x, y) iff S < 0 which is calculated by transforming f(x, y) into a quadratic form and analyzing it.
Alternatively, the curve f(x, y) = 0 is an ellipse E in the (x, y)-plane if and only if S > 0. V̇ > 0 only in

the interior of the ellipse excluding its intersection with L.
c) That the mentioned neighborhoods exist follows from Proposition 2.1. Next we clarify the construction

of the level curves.
If εab1 < 1 then there exists a neighborhood of (0,0) such that V (x, y) > 0 for all (x, y) �= (0, 0) in this

neighborhood. I.e. if S exists, it does not contain the origin. If also εb1 > a, then S > 0. Therefore V̇ > 0
inside E (which exists according to b)) except on L ∩ E . E surrounds the origin because f(0, 0) = −εb1 + a,
i.e. V̇ > 0 in the vicinity of the origin (except on the line y = 0). It is then enough to find a level curve
V = c which is outside of S (if it exists) and inside E to ensure that the trajectories of all solutions starting
on the curve do not enter the region surrounded by it.

Alternatively, if εb1 < a, the ellipse E either does not exist or does (provided S > 0) but the origin lies
outside it. Then the level curve we are looking for is one that does not cross both S and E .

d) If T > 0 and S < 0, then V > 0 and V̇ ≤ 0 (with V̇ = 0 only on y = 0). Since V is monotone decreasing
along the trajectory of any non-equilibrium solution and bounded below, the solution must converge to a
point (x∗, 0) and the only such point is the equilibrium.

If (ue, we) is not unique, let (u∗, w∗) be any other equilibrium. Take the region surrounded by the level
curve V (x, y) = V (u∗ − ue, w∗ − we) − δ for arbitrarily small δ > 0. All solutions starting in this region
converge to an equilibrium contained in the region, which is either (ue, we) or at most another one (the
third) equilibrium. Because δ is arbitrarily small, (u∗, w∗) cannot be stable.

Finally, to obtain the statements of the proposition, we return back to coordinates u, w.

2.3 Boundedness of the Solutions

The Lyapunov functional allows to prove the boundedness of solutions of (1.1)in an elegant way.

Proposition 2.3. There exists a family of nested bounded forward invariant sets of (1.1) covering the whole
(u, w)-plane. Thus, every solution of (1.1) is bounded for t > 0.

Proof. Consider the functional V defined by (2.1). Let S and E be the regions from the previous section,
if they exist.

Since E ,S are bounded sets, we choose c̄ = min{c ≥ 0|V (u, w) = c ⊃ E ∪ S ∪ (ue, we)}. Then for any
sequence

{ci}, ci > ci−1 > . . . c̄, ci → ∞, i → ∞,

the curves V (u, w) = ci enclose nested bounded sets Di such that any point (u, w) belongs to such a set for
a sufficiently large ci. Each of the sets Di is a forward invariant set. Thus, each solution of (1.1) is bounded
and confined in a forward invariant set containing its initial condition.

3 Phase plane and bifurcation analysis

The possible phase plane portraits of the system (1.1) were revealed in [1]. Here we are interested in how
such portraits can appear, the types of bifurcations, the values of the parameters when changes arise.

Proposition 3.1. As the eigenvalues µ1, µ2 of any equilibrium (ue, we) are of the form

µ1,2 =
1
2
R(ε, a, b1) ± 1

2

√
R2 + 4Q, (3.1)

where Q(ε, a, b1) ≡ εab1 − 1 and R ≡ εb1 − a, Hopf bifurcation occurs in cases when R = 0 and Q < 0.
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3.1 The case with I = 0

We consider this case separately because the equilibria can be found explicitly.
In this case (ue, we) = (0, 0) is always an equilibrium point. Then b1 ≡ g′(ue) = −λ < 0, and according

to Proposition 2.1, it is always locally stable.

3.1.1.Single Equilibrium Point.
First, (0,0) is the only equilibrium point if and only if

1 − 4
εa(1 − λ)2

< 0. (3.2)

Proposition 3.2. Let I = 0, suppose (0,0) is a unique equilibrium point. Suppose

a >
1
4
ε and

1
2
−

√
3(

a

ε
− 1

4
) < (1 − λ) <

1
2

+

√
3(

a

ε
− 1

4
)

(3.3)

holds, then the equilibrium point (0, 0) is globally asymptotically stable.
The proof uses the Lyapunov functional and is in Appendix A.

For the case when (3.3) does not hold, one can only state

Proposition 3.3. Let (0,0) be a unique equilibrium point. If (3.3) does not hold, (0, 0) is either globally
asymptotically stable, or there exists a stable periodic orbit.

The proof follows from Poincare- Bendixon’s theorem. However, we have not been able to observe an
instance when such an orbit exists for the case of unique equilibrium.

As (0,0) is always stable, Hopf bifurcations do not occur in this case.

3.1.2. More Than One Equilibrium: Subcritical Hopf and Bogdanov-Takens Bifurcation
On the two-dimensional parameter surface εa(1− λ)2 = 4 a saddle-node bifurcation of equilibria occurs.

Bogdanov-Takens (B-T) bifurcations [7] occur when a = 1 and εa(1 − λ)2 = 4. Small limit cycles exist in
the vicinity of the curve a = 1, ε = 4

(1−λ)2 at least for a < 1. Here we describe in some detail how the B-T
bifurcation is accomplished.

If εa(1 − λ)2 > 4, there are 2 equilibrium points in the first quadrant, E1 = (u1, w1) and E2 = (u2, w2),
where

u1 = p − r
√

q, u2 = p + r
√

q wi =
ui

a
and

q = 1 − 4
εa(1 − λ)2

, p =
1 + λ

2
, r =

1 − λ

2
.

(3.4)

At E1, εab1 > 1, which, according to Proposition 2.1 implies that E1 is always a saddle point.
It is easy to check that for E2, b1 = 1

aε − (1 − λ)
√

qu2. Then Q < 0 and it follows that E2 is stable if
R < 0, a repellor if R > 0 and undergoes Hopf bifurcation when R = 0. The type of the Hopf bifurcation
(super or subcritical) cannot be determined in general, but in particular, for each given set of values of the
parameters calculations to determine it can be carried out, as done in Appendix B.

More precisely, if εa(1 − λ)2 > 4, the equilibrium E2 is unstable if

aR ≡ 1 − a2 − εa(1 − λ)
√

q
[1 + λ

2
+

1 − λ

2
√

q
]

> 0. (3.5)
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0.6

w

E0

E2

E1

Figure 1: Phase plane trajectories in the (u, w)- plane, when both E0,E2 are
stable. I =0 , a = 1.2, λ =0.1, ε =14. E0=(0,0) and E2=(0.928,0.77).

We see from (3.5) that if a ≥ 1, E2 is stable independently of the values of ε, λ, because then R < 0 and
Q < 0. Some trajectories are attracted by E0, others, by E2. Figure 1 shows a typical phase portrait in that
case. The basins of attraction of both equilibria are separated by the stable manifold of the saddle E1.

If a < 1, E2 is a repellor for sufficiently small values of q, i.e. near the surface εa(1−λ)2 = 4, immediately
after the saddle-node bifurcation that causes the appearance of E1 and E2.

For example, if ε = 14, a = 0.37 and λ = 0.1, there are 2 positive equilibria besides the origin, and E2 is
a repellor, because (3.5) holds as is verified by direct calculation. All orbits, with the exception of the stable
manifold of E1, are attracted to the origin.

Stated otherwise, if we fix ε > 4 and consider the curve a = 4
(1−λ)2 , for each a < 1 there is a value of λ (in

fact an interval of values of λ) such that E2 is a repellor. Starting from such values of a, ε, λ, while keeping
ε > 4 fixed and increasing a, since R is a decreasing function of a, R will eventually become negative and
therefore E2 will become stable. The exchange of stability is realized via Hopf bifurcation, because Q < 0.
In the example above, by increasing a from 0.37, R becomes equal to 0 for a ≈ 0.379785, which is the value
of a for which Hopf bifurcation occurs. Numerical simulations show that the bifurcation is subcritical. An
unstable periodic orbit exists for values of a larger than 0.379785, i.e. when E2 is stable, as shown in Figure
2. Solutions, starting inside the unstable periodic orbit, approach E2, while solutions, starting outside of
the unstable periodic orbit (with the exception of E1 and its stable manifold), approach the other stable
equilibrium (0,0) (Figure 2).

-0.2 0.2 0.4 0.6 0.8
u

0.5

1

1.5

w

E0

E2

E1
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Figure 2: Phase plane trajectories in the (u, w)- plane, when both E0,E2 are
stable, but an unstable periodic solution surrounds E2. All solutions starting
near the orbit on its outer side approach E0. Solutions starting inside approach
E2. I =0 , a = 0.38, λ =0.1, ε =14.

That the Hopf bifurcation is subcritical can also be shown by direct calculation of the value G4 (see Ap-
pendix B). The constant G4 determining the type of the bifurcation is positive (22.5165), i.e. the bifurcation
is subcritical.

The analyzed case illustrates a Bogdanov-Takens bifurcation, as when a passes through 1 at the inter-
section with the curve a = 4

(1−λ)2 for each fixed ε > 4, both eigenvalues of the newly emerged equilibrium
are 0. The Hopf bifurcation curve in the (a, λ) space passes through this intersection point.

We note that, when compared to the case delineated in [7], p. 281, our example is different in the order
of events. In the case described in [7] the newly emerged equilibrium is stable and destabilizes while a stable
periodic orbit appears. In our case, it is unstable near the bifurcation curve and stabilizes later with the
appearance of an unstable periodic solution. Although this observation does not describe some completely
new phenomenon, it is worthwhile mentioning from an educational point of view.

3.2 The case with I �= 0

3.2.1. Existence of Equilibria
The equilibria in this case satisfy the equations

εg(u) − u

a
+ I = 0, I > 0,

w =
u

a
.

(3.6)

Here again, there might be one, two, or three equilibria. Let Φ(u) ≡ εg(u) − u
a . An equilibrium (ue, we)

should satisfy the equation Φ(ue) = −I. There are three distinct cases.
a) If

s = (1 − λ)2 + λ − 3
aε

< 0, (3.7)

Φ(u) is decreasing, thus there exists a unique equilibrium for all values of I.
b)When s = 0, Φ has an inflection point at u = 1+λ

3 . The 3-dimensional set s = 0, I = Φ(1+λ
3 ) consists

of saddle-node bifurcation points. Φ(u) is decreasing, and there exists a unique equilibrium for all values of
I.

c) If s > 0, Φ(u) has a maximum IM = Φ(1+λ+
√

s
3 ) and a minimum Im = Φ(1+λ−√

s
3 ). Depending on the

relation between IM , Im and I there can be 1, 2 or 3 equilibria. If IM < −I or if Im > −I there is only
one equilibrium, if Im < −I < IM , there are three equilibria, while I = −IM and I = −Im are saddle-node
bifurcation values of the parameter I.

3.2.2. Single Equilibrium Point: Stable, Unstable and Supercritical Hopf Bifurcation

If only one equilibrium, E0 = (u0, w0) exists, unlike (0,0) for the I = 0 case, it can be either stable or
unstable. The considerations in the previous section show that if (u0, w0) is a unique equilibrium and if
s �= 0, then Φ′(u0) = εg′(u0) − 1

a < 0. If s = 0, then Φ′(u0) ≤ 0.
Further, Proposition 2.1 tells us that if εg′(u0) − 1

a < 0, then E0 is asymptotically stable if

εg′(u0) < a. (3.8)

Thus, if E0 is unique, it is asymptotically stable if (3.8) holds with the exception of the case when s = 0
and I = −Φ(1+λ

3 ). It is unstable if εg′(u0) > a. In this case a stable limit cycle exists, which follows from
Poincare-Bendixon’s theorem. Because the exchange of stability is achieved via Hopf bifurcation (see 3.1)
the stable cycle appears as a result of a supercritical one when εg′(u0) = a.

We can combine these observations and the results from the previous section to obtain the following
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Proposition 3.4. If s < 0 or if s ≥ 0 and either I < −Φ(1+λ+
√

s
3 ) or I > −Φ(1+λ−√

s
3 ) hold, then the

unique equilibrium E0 = (u0, w0) is asymptotically stable if either a > 1 or εg′(u0) < a ≤ 1 and unstable if
a < εg′(u0) ≤ 1. In the last case, a stable periodic orbit exists around E0.

When E0 is unique and stable, there are cases in which we can prove that it is globally stable by using
the Lyapunov functional from section 2.

Let us examine a numerical example with a=0.06, ε = 14, λ = 0.5 and vary I from 4 to 13 (Figure
3). There is a unique equilibrium for all these parameter values and two Hopf bifurcations take place. For
I < 4.2 the unique equilibrium is stable and loses stability near this value. A supercritical Hopf bifurcation
leads to the appearance of a limit cycle, whose amplitude increases initially with increase in I and later
decreases again until a second Hopf bifurcation takes place at approximately I = 12.43, and the equilibrium
becomes stable again. The supercriticality of the Hopf bifurcations is also supported by calculating the value
of G4 (see Appendix B) which is the same negative value in both cases, G4 = −6.11724.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
u

4

6

8

10

12

14
w

a

b

c

d

e

f

g

Figure 3: A limit cycle appears through Hopf bifurcation, moves upward and
disappears through another Hopf bifurcation.
a = 0.06, λ =0.5, ε =14.
(a) I=4.26, (b) I=5, (c) I=7, (d) I=9, (e) I=11, (f) I=11.75, (g) I=12.42

3.2.3. More Than One Equilibrium: Subcritical Hopf bifurcations
Keeping a, λ, ε fixed, the values I = IM and I = Im are equilibrium saddle-node bifurcation points, as

noted in Section 3.2.1. These bifurcations occur when the slopes of the nullclines are the same, i.e. when
εg′(ue) = 1/a. Similarly to the case when I = 0, these points are B-T bifurcation points if a = 1.

Suppose that (3.6) has three positive solutions: E0 = (u0, w0), E1 = (u1, w1), E2 = (u2, w2), where
u0 < u1 < u2. E1 is always a saddle point, since εg′(u1) > 1

a . For E0 and E2 it is easily seen that
Φ′(ui) = εg′(ui) − 1

a < 0, i = 0, 2. The equilibrium points E0 and E2 will be locally stable or repellors,
depending on whether εg′(ui) is less or greater than a.

(A) Obviously, if a ≥ 1, the condition Φ′(ui) < 0, i = 0 or 2 implies stability of Ei.
(B) Let a < 1. Let us denote Ψ(u) = εg(u) − au. Then Ei, i = 0, 2 is asymptotically stable if Ψ′(ui) < 0

and unstable if Ψ′(ui) > 0. Let αM > αm be the roots of Φ′ and γM > γm be the roots of Ψ′. An easy
calculation shows that αM < γM and αm > γm. Since Φ′(ui) < 0, then ui < αm or ui > αM . Therefore
Ei is stable if ui < γm or ui > γM (see Figure 4). Thus the stability of E0 and E2 depends on the relative
location of the roots of Φ(u) + I with respect to the roots of Ψ′ when I varies.

Starting from a value of I < −IM and increasing I until I > −Im, first only E0 exists and it is stable if
I is small enough (as in a) on Figure 4). When I is increased:

α) E0 becomes unstable;
β) E1 and E2 appear via a saddle-node bifurcation, E2 being unstable (as in Fig 4b);
γ) E2 becomes stable.
These three phenomena always occur but not always in this order.
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δ) E1 and E0 disappear (as in Fig 4c).

α
m

α
M

γ
m

γ
M

Φ’

unstable eq. unstable eq. stable eq.

Ψ’

b)Φ+Ι 2

c) Φ+Ι

a) Φ+Ι

3

1

stable eq.

Figure 4: Equilibria of Φ + I are stable if located to the left of γm or to the
right of γM and unstable if located between γm, αm or αM , γM . See text for
more detail.

Eight different scenarios are possible which can be described in the following way. Let us denote by
Eq

i , i = 0, 2, q = s, u the equilibria Ei, i = 0, 2 in the cases when they are stable (q = s) or unstable (q = u).
Then the 8 scenarios can be described as

(i)Es
0 → {Es

0 , E
u
2 } → {Eu

0 , Eu
2 } → {Eu

0 , Es
2} → Es

2 ;
(ii)Es

0 → Eu
0 → {Eu

0 , Eu
2 } → Eu

2 → Es
2 ;

(iii)Es
0 → {Es

0 , E
u
2 } → {Es

0 , E
s
2} → {Eu

0 , Es
2} → Es

2 ;
(iv)Es

0 → {Es
0 , E

u
2 } → {Eu

0 , Es
2} → Es

2 ;
(v)Es

0 → {Eu
0 , Eu

2 } → {Eu
0 , Es

2} → Es
2 ;

(vi)Es
0 → Eu

0 → {Eu
0 , Eu

2 } → {Eu
0 , Es

2} → Es
2 ;

(vii)Es
0 → {Es

0 , E
u
2 } → {Eu

0 , Eu
2 } → Eu

2 → Es
2 ;

(viii)Es
0 → {Es

0 , E
u
2 } → {Eu

0 , Eu
2 } → Es

2 .

(3.9)

The notation {Eq
0 , Ep

2}, q, p = s, u means that both E0 and E2 exist, while Eq
i is used if only one

equilibrium exists. E1 is not included in the scheme to shorten notations. E1 is present whenever both E0

and E1 are present and is always a saddle.
The 8 scenarios correspond to 8 bifurcation curves.
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Figure 5: Eight possible bifurcation curves. See text.

The exchanges of stability are always accomplished via Hopf bifurcations. Since each of the scenar-
ios involves 2 stability exchanges, which may be accomplished either via supercritical or subcritical Hopf
bifurcation, it follows that the number of potential qualitatively different sequences of events is at least 32.

However, the appearance and disappearance of periodic orbits, not originating via Hopf bifurcations
(possibly via homoclinic orbit of the saddle E1 bifurcations) may make this number bigger.

We will not attempt to represent all the possible sequences of events that occur when I increases from
−∞ to +∞. We shall illustrate the statement in the previous paragraph by presenting the results of a
numerical computation of an example. It demonstrates the occurrence of several consecutive local and
global bifurcation events when increasing the value of I, including saddle-node bifurcations of equilibria and
of periodic orbits, subcritical Hopf bifurcations, homoclinic bifurcations, and a homoclinic orbit to a saddle
converting to a heteroclinic one and vice versa.

Example 1. In this example ε = 13.4, a = 0.3, λ = 0.0005.
We describe the numerical experiment for increasing values of I. The calculations were carried out

repeatedly with 3 different types of software. The results presented here are obtained using the package
DVODE (Lawrence Livermore National Laboratory, [3]).

For small enough I the stable equilibrium E0 is a global attractor. E1 and E2 appear via a saddle-node
bifurcation but E0 continues to be globally stable for small positive values of I attracting all solutions except
E1, E2 and the stable manifold to E1. There exists no periodic solution. This is illustrated for I = 0 on Fig
6a.

When I is approximately 0.0258541, the numerical calculations surprisingly show that a stable and an
unstable periodic orbit have appeared, seemingly simultaneously. One could suspect that a saddle-node
bifurcation of periodic solutions has occurred, but this is not the case, because the bigger orbit is stable and
surrounds all equilibria and the smaller one surrounds only E0 and is unstable. E0 attracts all solutions
starting inside the unstable periodic orbit. E2 is unstable in this case and all solutions starting outside of
the unstable periodic orbit are attracted by the stable one. This is illustrated on Fig. 6b. (S)

12



-0.4 -0.2 0.2 0.4 0.6 0.8 1
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1

1.5

2 E2

E0

Figure 6a: I=0. E0 attracts all solutions with the exception of the other two equilibria and
the stable manifold to E1.

-0.2 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2
E2

E1

converges to per.orbit
converges to E0

E0

Figure 6b: I=0.0258541. The solution starting at (0.27,0.9) converges to the stable periodic
orbit, as does the depicted solution started at (1,1). The solution starting at (0.25,0.77)
converges to the equilibrium E0. An unstable orbit exists that separates the solutions
converging to E0 and the solutions converging to the stable large orbit.

To understand this phenomenon, we conducted more accurate calculations. They showed that when I
is slightly smaller (I ≈ 0.025854050872), the solutions starting in a close proximity of E2 are attracted by
E0 while the large periodic orbit also exists and attracts the solutions outside of it and in a certain region
inside it to the right of E0, E1, E2 line. This is illustrated on Figure 6c.

For values of I very close to but smaller than the above value the stable periodic solution does not exist.
To get some insight, we calculated numerically the quantity

f = e
R

T
0 [εg′(pI(s))−a]ds

where pI(s) is the numerically computed periodic solution, for several consecutive values of I between I∗ =
0.025854051 and I∗∗ = 0.025854050872. The quantity f is equal to the second Floquet multiplier (the first is
1) of pI(s). For these values of I, f < 1 and it increases fast, approaching 1, when I decreases. For example
for I = 0.025854051, f ≈ e−18.36, for I = 0.0258540509, f ≈ e−10.04, for I = 0.025854050872, f ≈ e−0.575.
We conclude that at a value I smaller than, but very close to I∗∗ = 0.025854050872 the periodic solution
becomes unstable. This loss of stability is accompanied by the coalescence of the stable periodic solution
with an unstable one [5], p. 492.
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Figure 6c: I = 0.025854050872. All depicted solutions starting to the left of the equilibria
converge to E0. See text for further explanation.

Further we present a possible reconstruction of the series of bifurcation events for values of I between I∗

and I∗∗. A part of it was proposed by one of the referees and complemented by the first author. The basic
player in all events is one of the stable manifolds of the saddle E1 and specifically, its end at −∞.

Starting with values of I larger than I∗ and decreasing I, first an unstable (small and surrounding E0)
and stable (large) periodic orbits exist, as represented on Fig. 7I. One of the stable manifolds to E1 is a
heteroclinic orbit starting at −∞ from the ”small” periodic orbit. We shall refer to it as M1. The other
manifold (M2) is a heteroclinic orbit connecting E2 and E1. While further decreasing I, the small periodic
orbit and M1 approach each other (Figure 7J) and coalesce into a homoclinic orbit of the saddle - i.e. now
the −∞ end of M1 is at E1 (Figure 7K). The homoclinic orbit is structurally unstable and converts into a
heteroclinic one starting at −∞ from E2 (Fig. 7L), which gradually expands.

For slightly smaller I both stable manifolds to E1 continue to be heteroclinic orbits (Figure 7L, M),
surrounding the basin of attraction of E0. The numerical calculations fail to reveal what exactly happens
further but it can be conjectured that the ”big” heteroclinic orbit swells (Figure 7M) until it converts again
to a homoclinic orbit Γ, i.e. the −∞ end of M1 is now at E1 again (Figure 7N). The homoclinic orbit
exists only at the point of bifurcation and disappears for smaller I to form an unstable ”large” periodic orbit
containing now all equilibria and located inside the stable periodic orbit (Fig. 7O). These two periodic orbits
later on coalesce and disappear simultaneously (Fig. 7P).

Note that the events between the disappearance of the ”small” and the ”large” unstable periodic orbits
happen very fast, i.e. in a very narrow range of values of I (an interval of magnitude 10−7!). This is the
reason why these events are hardly detectable via computations and why it originally seemed that the stable
periodic solution disappears simultaneously with the ”small” unstable periodic one.

The hypothetical scenario described above is the most probable one, as it is supported by numerical
calculations. Another possible route we considered is the one in which the homoclinic orbit Γ (figure 7N)
coalesces with the stable periodic solution. This would have been possible only if E1 and the ”angular” point
A (Fig. 7N) of the stable orbit coalesce at the bifurcation value. Our numerical calculations show that this
is not the case. When I approaches the bifurcation value, E1 and A stay apart at almost the same distance.

14



.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

E0
E0

E0E1

E2E2

A B C

K

J

LM

P Q

F E

Γ

N O

A

E1

E1

E1

E1 E1

E1
E1

E1
E1 E1

E1

G

IH

D

E1E1

E0

E0E0E0

E0
E0

E0

E2

E1

E0

E0

E0

M2

M1
M1

M2

Figure 7: A full sequence of events corresponding to Example 1. A-Q plots are represented in
decreasing order of I. Dashed lines correspond to unstable periodic orbits; solid lines - to stable
periodic solutions and solution trajectories; dotted lines - to stable manifolds to the saddle.
The shape of the limit cycle as depicted is only representative and does not correspond exactly
to the actual one in all of the cases.

Additionally, the saddle quantity, [7], is positive:

σ = εg′(u1) − a >
1
a
− a = 1/0.3− 0.3 > 0.
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This indicates that the homoclinic orbit of the saddle appeared as a result of a bifurcation of an unstable
periodic solution. These calculations and the loss of stability of the limit cycle make us believe in the validity
of the proposed events.

Note that in this case the bifurcating unstable periodic solution is outside the homoclinic orbit - a non
typical situation compared to the usually discussed in the literature ones ([7, 6]).

After this necessary “roll-back” we continue from the point (S) (just before Figure 6). Increasing I from
0.0258541, we observe numerically that E0 loses stability and the remaining attractor is the large periodic
orbit (Fig. 7H). At approximately I = 0.2, E2 finally becomes stable (Fig. 7G). This is accomplished by
a subcritical Hopf bifurcation. An unstable periodic solution appears when E2 gains stability. The limit
cycle still exists and all solutions starting out of the unstable periodic solution approach it. E2 is stable
for all values of I greater than 0.2. Further, when I is approximately equal to 0.2138, the small periodic
solution disappears coalescing with the homoclinic orbit of the saddle as had happened (as described above)
with the previously existing unstable periodic solution (Fig. 7F). In a manner completely similar to the
steps illustrated on Figures 7M-O, the large periodic solution disappears next and finally, as I increases, the
equilibrium points E0 and E1 approach each other and disappear in a saddle-node bifurcation, leaving E2

the only attractor.
The sequence of events depicted on Figure 7 is in agreement with the bifurcation diagram on Figure 5(i).

Obviously the same bifurcation diagram may correspond to different sequences of bifurcation events.

4 FH-N equations with periodic forcing

Consider FH-N equations with periodic forcing:

u̇ = εu(u − λ)(1 − u) − w + F (t),
ẇ = u − aw,

(4.1)

where F (t) is a periodic forcing term with period T .
If we set x = w, y = u − aw, then

ẋ = y, ẏ = −yf(x, y) − g1(x) + F (t),

where f and g1 are defined as in Section 2, ue = 0. This is the Cauchy normal form of the second order
equation:

ẍ + f(x, ẋ)ẋ + g1(x) = F (t).

According to [5], pp. 171-178, if there are constants ã, m, M > 0 such that:
(i) for |x| ≥ ã, |y| ≥ ã, f(x, y) > m,
(ii) for (x, y) ∈ IR2, f(x, y) > −M ,
(iii) for |x| ≥ ã, there holds xg1(x) > 0,
(iv) the function g1(x) is monotone increasing in (−∞,−ã) and (ã,∞),
(v) |g1(x)| → ∞ as |x| → ∞,
(vi) g1(x)/G(x) → 0 as |x| → ∞, where G(x) =

∫ x

0
g1(u)du,

then the system has a non constant periodic solution with the same period T of the forcing term.

Applying this result yields

Proposition 4.1. If F (t) is a T-periodic forcing, then (4.1) has a T-periodic solution.

The proof is in Appendix A.
As a demonstration, we present an example with a FH-N system perturbed by the periodic ”output”

u(t) of another similar system, i.e. the two systems are coupled oscillators.
Namely, we calculate numerically the solutions of the system

u′ = εu(1 − u)(u − λ) − w + I

w′ = u − aw

u′
1 = ε1u1(1 − u1)(u1 − λ1) − w1 + θu

w′
1 = u1 − a1w1,

(4.2)

16



where ε = 14, ε1 = 13.4, a = 0.06, a1 = 0.1, λ = 0.5, λ1 = 0.005, I = 5 and θ can take different values to
enhance or weaken the forcing.

For θ = 0.75 we find numerically that the whole system has a periodic attractor with a period equal to
the forcing period.

Besides solutions with the same period T of the forcing function, it is possible to have solutions with
a period, which is an integer multiple of T . For example, for θ = 0.05, the forced system has a periodic
attractor with a period twice as big as the forcing period.

It is worthwhile to remark that the last theorem proves that a periodic solution with the same period as
that of the forcing exists (a phenomenon usually referred to as phase locking) no matter what the amplitude
of the forcing is.
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Appendix A.
Proof of Proposition 3.2. Consider the functional V (u, w) defined by (2.1). For the (0,0) equilibrium we

have
b2 = λ + 1, b1 = −λ.

We shall show that if (3.2) holds, i.e. if (0,0) is a unique equilibrium, then G(w) ≥ 0, ∀w.
G(w) is a polynomial of degree 4 in w, which has two repeated roots at the origin, i.e. G(w) has a local

extremum at 0. We explore the existence of other extrema.
G′(w) = 0 ⇔ g1(w) = 0 (see 2.2).
But

g1(w) = −ε[g′(0)aw +
1
2
g′′(0)(aw)2 +

1
6
g′′′(0)(aw)3] + w

(see the definition of g1 in Section 2.2). Since the last expression in the brackets is a part of a Taylor
expansion of g(aw) at 0, we get,

g1(w) = −ε[g(aw) − g(0)] + w = −εg(aw) +
1
a
aw.

Therefore,

G′(w) = 0 ⇔ εg(aw) =
1
a
aw.

So, a value wm is an extremum of G if and only if it satisfies g(awm) = 1
aawm, which is true if and only if

(awm, wm) is an equilibrium solution. However, it was assumed that the only equilibrium is (0,0). It follows
that the only extremum of G is at 0 and it is a minimum (as G′′(0) = 1 + λεa > 0).

Thus, in the case of an unique equilibrium, G(w) is positive everywhere, except at the origin, where it
is zero. So, consequently, V (u, w) is positive everywhere, except at the origin. This is true iff the value T
from Section 2.2 is positive: T > 0 (Proposition 2.2, a)).

Further, for the value S defined in the beginning of Section 2.2, S < 0 is equivalent to

(1 − λ)2 + λ − 3
a

ε
< 0, (5.1)

which is equivalent to (3.3). Therefore, in the considered case, T > 0, S < 0, i.e. all conditions of Proposition
2.2 are fulfilled and thus (0, 0) is a globally asymptotically stable equilibrium of (1.1).

Proof of Proposition 4.1
The existence of a constant positive value M is easy to establish since f(x, y) has a minimum at x =

(λ + 1)/(3a), y = 0 at which point f has the value −[ε(λ2 − λ + 1)/3 − a].
Set M = |ε(λ2 − λ + 1)/3 − a|.
Further, if ζ ≥ 0 is large enough, the curve E : f(x, y) = ζ exists and is an ellipse (compare with Section 2).
Take a square Q = {|x| < a1, |y| < a1}, containing E and set m = ζ.

Next, xg1(x) is a fourth degree polynomial, where the highest power in x has a positive coefficient.
Therefore, for some a2, xg1(x) > 0 if x > a2 > 0.

Further, since g1(x) is a third degree polynomial, there is a a3, such that g1(x) is monotone increasing if
|x| > a3.

Set ã = max(a1, a2, a3). Then (i), (iii) and (iv) hold.
Finally, (v) and (vi) are immediate. This concludes the proof.

Appendix B. Stability of the periodic solutions arising through Hopf bifurcation
Suppose εg′(ue) = a. This is the condition for occurrence of Hopf bifurcation for system (1.1). Shift

the equilibrium point (ue, we) to the origin by the transformation ũ = u − ue, w̃ = w − we. Then make the
transformation x̃ = aũ + w̃, ỹ = (1 + a2)ũ − 2aw̃.
The equations transform 1.1 to:

˙̃x = ỹ + aεb2(
2ax̃ + ỹ

3a2 + 1
)2 − aε(

2ax̃ + ỹ

3a2 + 1
)3,

˙̃y = −(1 − a2)x̃ + εb2(1 + a2)(
2ax̃ + ỹ

3a2 + 1
)2 − ε(1 + a2)(

2ax̃ + ỹ

3a2 + 1
)3,
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where b2 = g′′(ue)/2.
If we set τ =

√
1 − a2t, x =

√
1 − a2x̃, y = ỹ and ˙ stands for differentiation with respect to τ , then the

equations can be written as:
ẋ = y + a0(p1x + p2y)2 + a1(p1x + p2y)3,

ẏ = −x + c0(p1x + p2y)2 + c1(p1x + p2y)3,

where
a0 = ab2ε, a1 = −aε,

p1 =
2a√

1 − a2(3a2 + 1)
, p2 =

1
3a2 + 1

,

c0 =
1 + a2

√
1 − a2

εb2, c1 = − 1 + a2

√
1 − a2

ε.

Following the Andronov- Hopf Bifurcation Theorem ([5], p.415-434), we look for a Lyapunov function of the
form :

F (x, y) = x2 + y2 + Σm
i=3Fi(x, y),

where Fi is a homogeneous polynomial of degree i. Using
F3 = α0x

3 + α1x
2y + α2xy2 + α3y

3 and F4 = β0x
4 + β1x

3y + β2x
2y2 + β3xy3 + β4y

4,
we choose the constants suitably, so that

Ḟ (x, y) = G4(x2 + y2)2 + o((x2 + y2)2).

This is done by choosing:

α0 = −2(2a0p1p2 + c0p
2
1 + 2c0p

2
2)/3, α1 = 2a0p

2
1,

α2 = −2c0p
2
2, α3 = 2(2c0p1p2 + a0p

2
2 + 2a0p

2
1)/3.

β1, β3 are chosen so that they satisfy the two linear algebraic equations:

β1 + β3 = 2a1p
3
1 − 2c1p

3
2 + 3a0α0p

2
1 + c0α1p

2
1 − a0α2p

2
2 − 3c0α3p

2
2,

5β1 − 3β3 = −6a1p1p
2
2 + 4a1p

3
1 − 6c1p

2
1p2 + 3a0α0(2p2

1 − p2
2) − 4a0α1p1p2+

c0α1(2p2
1 − p2

2) − a0α2p
2
1 − 4c0α2p1p2 − 3c0α3p

2
1.

G4 is then given by :
G4 = 2a1p

3
1 + 3a0α0p

2
1 + c0α1p

2
1 − β1.

Using this formula, we calculate G4 in each separate case. If G4 < 0, the periodic solution emerging
through Hopf bifurcation is stable, i.e. the bifurcation is supercritical. If G4 > 0, the periodic solution is
unstable, i.e. the bifurcation is subcritical.
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