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ABSTRACT

Current induced oscillations of a space clamped neuron action potential demon-
strates a bifurcation scenario originally encapsulated by the four dimensional Hodg-
kin-Huxley equations. These oscillations were subsequently described by the two
dimensional FitzHugh-Nagumo Equations in close agreement with the Hodgkin-
Huxley theory. It is shown that the FitzHugh-Nagumo equations can to close ap-
proximation be reduced to a generalized van der Pol oscillator externally driven by
the current. The current functions as an external constant force driving the action
potential. As a consequence approximate analytic expressions are derived which pre-
dict the bifurcation scenario, the amplitudes of the oscillations and the oscillation
periods in terms of the current and the physiological constants of the FitzHugh-
Nagumo model. A second reduction permits explicit analytic solution and results
in a spiking model which can be multiply coupled and extended to include the dy-
namics of phase locking, entrainment and chaos characteristic of time-dependent
synaptic inputs.
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1 Introduction

Investigations of the electrochemistry of a neural pulse initiated by Helmholtz
in the nineteenth century [Scott, 1975] reached a plateau fifty years ago when
Hodgkin and Huxeley [1952] reported their detailed quantitative studies of
pulse conduction and oscillation. Their results were encapsulated by a system
of four coupled nonlinear differential equations [H-H model] which predict the
features of the neural pulse action potential in agreement with their experi-
ments. The full implications of the H-H model revealed by mathematical solu-
tion presented challenges not only to its authors but also to later researchers
[Cole et al., 1955; FitzHugh & Antosiewicz, 1959; Cooley & Dodge, Jr., 1966]
which continues to the present [Mascagni & Sherman, 1998]. The complexity
of the H-H equations prompted FitzHugh [1961] to introduce a formal reduc-
tion to a more tractable two dimensional system which can be expressed in
the form

dV

dt
= −V (V − a)(V − 1) − Y + F

dY

dt
= bV − εY , (1)

where V is the action potential, Y is a recovery variable which measures the
state of excitability of the cell, and I is the current which remains to be spec-
ified. The quantities a, b, ε are constants related to the physiological state of
the neuron. Under conditions the axon is space clamped such that the I is
constant FitzHugh demonstrated these equations predict the resting, refrac-
tory and oscillatory phenomena in close identification to those demonstrated
by experiment and by the H-H equations. Similar to the procedure of Hodgkin
and Huxley, who extended their equations to account for neural pulse conduc-
tion along the axon, Nagumo et.al [1962] subsequently identified I with the
second spatial derivative of the action potential to provide a mechanism for
propagation. The FitzHugh-Nagumo [F-N equations] Eqs. (1) for constant I
provided the first example of two dimensional dynamical models which have
been developed to account for more subtle details of neural excitations and
other phenomena such as bursting [Izhikevich, 2000]. Analytical connections
between the two dimensional models and their extraction from H-H dynam-
ics are to be found in a recent monograph [Gerstner & Kistler, 2002]. The
purpose of the present study is to return to the F-N equations above for the
space clamped case to introduce approximations designed to supplement the
picture of neuron dynamics. A second goal is to provide approximate ana-
lytic relations which predict the oscillation amplitudes and periods in terms
of the constants and the current. While these equations have achieved text-
book status [Jackson, 1991], as will be discussed in the final section of this
study, analytic simplification of these equations results in a simple, analytic
spiking model which can be simply extended to treat the dynamics of more
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general synaptic inputs.

2 Reductions of the FitzHugh-Nagumo Equations

Our procedure is scale the time variable according to τ =
√

b t and express the
two first order differential equations of Eq. (2) as a single second order differen-
tial equation. Differentiation of the first equation of Eq. (2) with substitution
of the second equation leads to the F-N model in a form which will be simply
approximated by two successive reductions denoted by arrows according to

d2V

dτ 2
= −k(V − q1)(V − q2)

dV

dτ
+

[
I ′ − V

]
− ε

b

[
V (V − a)(V − 1)

]

with q1,2 ≡ 1

3

[
(a + 1) ∓

√
(a + 1)2 − 3(a + ε)

]
, k ≡ 3√

b
, I ′ ≡ ε

b
I (2)

FitzHugh − Nagumo Equation

−→ d2V

dτ 2
= −k(V − q1)(V − q2)

dV

dτ
+ I ′ − V (3)

Reduced Model

−→ d2V

dτ 2
+ σk′dV

dτ
+ V = I ′ with

[
k′ = kf(Vmin) =

k

4
(q1 − q2)

2
]

and
[
σ = −1 for q1 < V < q2, σ = +1 otherwise

]
(4)

Reduced Broken − Linear Model

The exact equations [2] have constants grouped into q1,2 which will function as
dynamical barriers and as quantifiers of bifurcation. The constant current I is
scaled by the factor ε

b
, and the quantity k in terms of b alone functions as a stiff-

ness constant parameterizing relaxation oscillation. The dynamics of the F-N
equations [2] with increasing current follows a bifurcation scenario analyzed
by Troy [1976]. Troy’s scenario is summarized here in terms of the present con-
struction to provide the point of departure for the subsequent simplifications of
Eqs. [3,4]. The F-N equation obeys Class II dynamics [Izhikevich, 2000] char-
acterized by Hopf bifurcation from stationarity to oscillation. There are three
fixed points V0(I) determined by the current when the two terms in brack-
ets of Eq. (2) balance, only one of which is real for the parameter and current
range of neuron interest. The eigenvalues for the linearized solutions about this

fixed point are p± = λ±iω, where λ = k(q2−V0)(V0−q1)
2

, ω =

√
4−[k(V0−q1)(V0−q2)]

2
.

These eigenvalues have a positive real part provided q1 < V0(I) < q2. Within
this range the linear solutions are unstable, and in particular subcritical bi-
furcation to oscillation from below and above occur at V0 = q1 and V0 = q2

respectively to initially an unstable focus. Combining this result with the
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fixed point condition implies that oscillations occur within the current range
I1 < I < I2 where I1,2 = b

ε
q1,2 + q1,2(q1,2 − a)(q1,2 − 1). At I = I1 the focus be-

comes unstable and subthreshold low amplitude oscillations centered around
the lower boundary q1 are born. These oscillations become unstable at a small
intensity increment above I1 and are succeeded by large amplitude unsymmet-
rical relaxation oscillation of large, spiked, maximum and a relatively shallow
minimum with respect to q1: the major fraction of the pulse duration is from
the minimum to q1. As the current progresses the oscillations become more
symmetric and the period tends to decrease. The period minimum and oscil-
lation symmetry is reached at Imin = I1+I2

2
. Beyond this point as the current

increases from Imin the process reverses and the oscillations again progress
towards increasing asymmetry where now most of the duration of the pulse
is during the time the voltage is greater than the upper boundary q2. As I2

is approached there is collapse back to low amplitude oscillation terminating
with damped oscillatory decay at I2. Beyond I2 the neuron is frozen by the
current into the steady state value of Vss = I > I2.

3 Reduced Model [Equation (3)]

The F-N scenario is preserved in all details even if the cubic term V (V −
a)(V − 1) of the second bracket in Eq. (3) is neglected to result in the reduced
model of Eq. (3). There is now the single fixed point which is just the scaled
current V0 = I ′ and the current range for oscillation to be I1 = b

ε
q1 < I <

b
ε
q2 [q1 < I ′ < q2], a slight quantitative expansion of this range compared to

the F-N equation. Figures 1A and 1B show solutions of Eq. (3) to graphically
demonstrate this scenario. These illustrations use the values introduced by
Rinzel [1981]: a = 0.25 and ε = b = 0.002. From the definition of Eq. (2) the
figures are for the specific example of I1 = q1 = 0.11732, I2 = q2 = 0.71602,
compared to I1 = 0.13106, I2 = 0.62126 for the F-N Eq. (2). The choice ε = b
implies Hopf bifurcation occurs at these barrier points q1,2. The pulses have
the same shape and display the same dynamics as solution of the F-N Eq. (2)
and reproduce closely in this regard solution of the H-H equations [Cooley
& Dodge, Jr., 1966; Gerstner & Kistler, 2002]. The validity of this reduction
hinges on the fact that a plot of the neglected cubic function in the range
q1 < V < q2 shows it to be very small compared to the remaining terms of the
F-N equation for the physiologically meaningful range of parameters. Because
b = 0.002 is small, the stiffness constant parameterizing the F-N Eq. (2) is
large, [k = 67.08] which fulfills the criterion for relaxation oscillation. More
generally, if ε = 0 and q1,2 = ∓1 the F-N equation reduces to the van der
Pol equation [Jackson, 1991] which was the point of departure in FitzHugh’s
study. As a consequence the reduction of Eq. (3) provides a simple picture in
the spirit of FitzHugh’s original development: nerve impulse oscillation mod-
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Fig. 1. Reduced Model, Eq. (3). Upper part, A: Individual curves
(a) Refractory behavior at I=0, (blue curve). (b) Low Amplitude oscillation
at I = 0.11837 (red curve), (c) Large amplitude relaxation oscillation at
I = 0.11838 (black curve). Black horizontal lines locate the dynamical boundaries
at q1 = 0.11732, q2 = 0.71602 from Eq. (2) using the constants of Rinzel [1981].
The dark green horizontal line at q1 + I = 0.23569 illustrates that the maximum of
the low amplitude oscillation is almost equal to this value just prior to bifurcation to
relaxation oscillation. For all figures, the initial conditions are V (0) = 0, dV

dτ |0 = 1.
Lower part, B: Individual curves (a) Symmetric relaxation oscillation where pe-
riod is a minimum: I = q1+q2

2 = 0.4167 (green curve). (b) Oscillation at high current
just prior to reverse bifurcation to small oscillation at I = 0.71495 (black curve).
(c) collapse to small amplitude at I = 0.71496 (red curve) . The dark green hori-
zontal line at q1 + I = 0.83228 illustrates that the maximum of the low amplitude
oscillation is equal to this value upon collapse of the relaxation oscillation (b). (d)
Steady state saturation at high current (nerve block): I = 0.75 > q2 (blue curve).
The black horizontal lines locate the boundaries as in A.

eled by Eq. (3) is interpreted as produced by the scaled current I ′ functioning
as a constant external force. The force I ′ drives the action potential structured
as a generalized van der Pol oscillator parameterized by positive dynamical
boundaries 0 < q1 < q2. In particular, at zero current, linearization of Eq. (3)

around zero produces eigenvalues λ1,2 =
−kq1q2±

√
(kq1q2)2−4

2
. Since q1,2 are pos-

itive, regression to the resting state at zero current exemplified by the blue
curve in Fig. 1A occurs because both eigenvalues are negative. This is distinct
from the van der Pol equation for which q1,2 = ∓1 resulting in positive eigen-
value and consequent limit cycle behavior. This reinforces that transition from
the van der Pol equation to the F-N model, which features refractory behavior,
implies necessarily the introduction of positive dynamical boundaries.

This reduction to van der Pol dynamics allows analytic determination of the
transitions from small oscillation to relaxation oscillation (from the red curve
to the black curve in Fig. 1A and the reverse process at high current in Fig. 1B).
Relative to the fixed point at V0 = I ′, with x = V − I ′ and v = dx

dτ
indicating

an analogy to ‘position’ and ‘velocity’, the reduced model Eq. (3) becomes

dv

dτ
+ k

[
x + (I ′ − q1)

][
x − (q2 − I ′)

]
v + x = 0 .

The red curve oscillations are not harmonic but they are relatively small. As
an approximation we assume a harmonic solution of the form x = A cos φ,
v = A sin φ and invoke the averaging procedure of Krylov & Bogoliubov[1947;
Jackson, 1991] appropriate for oscillations with small departure from har-
monic. Substitution into this expression and averaging over φ gives the result

that dA
dτ

= kA
2

[
(I ′ − q1)(q2 − I ′)− A2

4

]
→ 0 as τ → ∞. The dark green lines at

V = q1 + I ′ of the red curves fall almost at the maxima of these curves just
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prior to bifurcation. Approximately, therefore, transition from small to relax-
ation oscillation at low current (Fig. 1A) or the reverse transition at high cur-

rent (Fig. 1B) occurs at current I∗, such that A = q1 = 2
√

(I∗ − q1)(q2 − I∗).
Therefore, the transition currents are

I∗
± =

(q1 + q2) ±
√

q2(q2 − 2q1)

2
. (5)

For the present example this result predicts transition from low to relax-
ation oscillation to occur at I∗

− = 0.123 [0.118] and the reverse to occur
at I∗

+ = 0.710 [0.715] where the values in brackets are the computer so-
lution values shown in Figs. 1A and 1B – predictive agreement within 4%.
This analytical result, however, is parameter-specific in that transition to or
from relaxation oscillation implies a large stiffness parameter k of Eq. (2).
To demonstrate refractability of his model, FitzHugh [1961] chose param-
eters [a = 0.130, b = 0.08754, ε = 0.0789] which implies a stiffness pa-
rameter approximately one-sixth the present value. As a consequence the
relatively soft oscillations produced by this parameter choice do not indi-
cate sharp transition. The present choice, proposed by Rinzel, is consistent
with the scenario of the action potential evolving to a sharp pulse, or spike,
which is predicted by Eq. (5) in the asymptotic limit that b is very small
[k → ∞]. Additionally, perusal of the pulses shown in the figures indicates
that the pulse amplitudes maxima and minima are almost independent of
the current in the relaxation oscillation regime. This behavior can be un-
derstood by assuming that the amplitude factors A above appropriate to

Vmax,min are given by Amax,min = ±2
√

(I ′ − q1)(q2 − I ′). Since the amplitude
is asymptotically insensitive to the current, we will choose the center value of
I ′ = ε(I1+I2)

2b
= q1+q2

2
so that Amax,min = ±(q2 − q1) with respect to the fixed

point I ′. Then Vmax,min = I ′+Amax,min so that the pulse extrema are predicted
to be approximately independent of the current and determined by the control
parameters defining the barriers according to

Vmax =
3q2 − q1

2
, Vmin =

3q1 − q2

2
. (5’)

In the approximation that the time spent within the q1−q2 range is neglected,
and assuming the dynamics is sufficiently slow that one puts the second deriva-
tive in the Reduced Model of Eq. (3) equal to zero, then the period of a pulse
is given approximately by T =

∫ dx
v(x)

where the limits of integration extend

[q2 − I ′ to Vmax − I ′] and [q1 − I ′ to Vmin − I ′]. The result is

T = k


3(q1 − q2)

2

4
−

−
[
(I ′ − q1)(q2 − I ′)

]
ln

[[
(3q2 − q1) − 2I ′

][
2I ′ − (3q1 − q2)

]
4(q2 − I ′)(I ′ − q1)

]
 (5”)
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where the current range is restricted by Eq. (5”): I∗
− < I < I∗

+. For the symmet-

ric case, I ′ = q1+q2

2
this expression reduces to T = (3−2 ln 2)k′, k′ = k(q1−q2)2

4
,

which is asymptotically the period of a van der Pol oscillator [Jackson, 1991],
linearly proportional to the stiffness constant k′. k must be sufficiently large
that one can neglect corrections in reciprocal powers of k′. In this particu-
lar numerical case, k′ = 6.011, is sufficiently small that the computed pe-
riod would require this correction. For the symmetric case, the period ac-
cording to the asymptotic Eq. (5”) is 9.75, which is corrected to 13.56 in-
cluding the 7.0143

(k′)
1
3

term [Dorodnitsyn, 1947; Phillipson & Schuster, 2001], in

good agreement with the computer value of 13.08. Equation (5’) predicts
[Vmax, Vmin] = [1.02,−0.18] in close agreement with the computer solution of
[1.02± 0.05,−0.19± 0.04]. These asymptotic current independent expressions
neglect the slight increase of Vmax and slight decrease of Vmin with increasing
current. As b is smaller the asymptotic expressions are more accurate. For
example, for ε = b = 0.0001, [k = 300, k′ = 27.07], Eqs. (5’) and (5”) agree
with computer solution of Eq. (3) within 4% over the total current range I±
of Eq. (5).

4 Reduced Broken-Linear Model [Equation (4)]

The generic feature of clamped neuron dynamics is spiking. The present dy-
namics of achieving this through Class II Hopf bifurcation scenario is alter-
native to Class I dynamics where spike evolution is through saddle-node bi-
furcation which can be canonically modeled on an invariant circle [Izhikevich,
2000]. The most famous neuronal model which has the flexibility to display
either Class I or Class II dynamics is that of Morris & Lecar [1981; Rinzel &
Ermentrout, 1998]. It has been noted that, on the one hand, these two dy-
namical mechanisms are consistent with a myriad of ionic mechanisms, and
on the other hand, that this classification is not unambiguous [Izhikevich,
2000]. These complexities are bypassed in the construction of spiking neu-
ron models in their simplest form (such as the Integrate and Fire model) for
studies of collective neural behavior associated with neural coding, memory
and network dynamics [Gerstner & Kistler, 2002]. To construct a bridge be-
tween a specific bifurcation model and a simpler one which emphasizes the
generic refractory and spike features of neural behavior inherent to collective
neural models we replace the smooth parabolic function multiplying the first
derivative in Eq. (3) by a discontinuous weighted step function to produce the
Reduced Broken-Linear Model of Eq. (4). The weighting factor f(Vmin) mul-
tiplying the step σ = ±1 centers the dynamics such that this constant passes
through the parabola minimum at q1+q2

2
. The weighted stiffness constant k′

is precisely that characterizing symmetric oscillation of the Reduced Model.
This second reduction reflects the fact that the oscillations characteristic of
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Fig. 2. Reduced Broken-Linear Model, Eq. (4). Individual curves: (a) Refrac-
tory behavior at I=0 (blue curve) which mimics the blue curve of the Reduced Model
in Fig. 1A, (b) I=0.11837 (red curve) to be compared with the low amplitude oscil-
lation (red curve) of the Reduced Model in Fig. 1A at the same current value. The
relaxation oscillation here illustrates the all-or-nothing nature of the present model,
(c) symmetric relaxation oscillation (black curve) where the period is a minimum
I = q1+q2

0 .4167 to be compared to the symmetric oscillation of the Reduced Model
in Fig. 1B (gray curve). Between the two barriers the oscillations of the two models
are similar except for details in the shape. These figure computed using Rinzel’s
choice of parameters discussed in the text, so that k′ = 6.011 from it’s definition in
Eq. (4).

the F-N model feature, for b sufficiently small, large change in the pulse form
in the vicinity of the q1,2 boundaries as illustrated in Figs. 1A and 1B. The
boundaries are, as a consequence of this second reduction, hard, and the re-
sulting equations linear in the two regions separated by the boundaries and
therefore exactly solvable. A different broken linear approach has been inves-
tigated by Rinzel [1978] who approximated the cubic function in the original
first order F-N Eqs. (1) by a saw-tooth piecewise linear function with three
linear components. This implies discontinuities in passage to a second order
equation so that, as emphasized in his study, the bifurcation description re-
quired nonstandard considerations. Replacing here a quadratic term by a two
piece step after passage to the second order differential equation removes this
complication. Figure 2 illustrates the dynamics for representative values of
the current. The blue curve at zero current again demonstrates refractabil-
ity. The red curve, to be compared to the red curve of Fig. 1A illustrates the
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all-or-nothing feature of the model: small amplitude oscillations are no longer
present so that pulses of almost fixed amplitude evolve from sharp bifurcation
at the lower boundary I ′ = q1. With increasing current one obtains the same
scenario of decreasing period to a period minimum (black curve) when the
current is centered between the boundaries with the trend reversing until the
upper boundary bifurcation point is reached at I ′ = q2.

Analytical predictions of the model follow from the solution of Eq. 4. With
respect to the fixed point I ′, V (τ) = I ′ + x(τ), this solution is given by

x(τ) =
v(0) − s2(σ)x(0)

s1(σ) − s2(σ)
exp(s1(σ)τ) +

s1(σ)x(0) − v(0)

s1(σ) − s2(σ)
exp(s2(σ)τ) (6)

s1(−1) = p1, s2(−1) = p2 [q1 < V < q2], s1(1) = −p2, s2(1) = −p1 [otherwise]

p1 =
1

2
[k′ +

√
(k′)2 − 4], p2 =

1

2
[k′ −

√
(k′)2 − 4], with p1 + p2 = k′, p1p2 = 1 .

where v(0) ≡ dV
dτ

∣∣∣
0

and p1,2 are the eigenvalues of Eq. (6) for σ = −1. Ap-

plication of this solution and matching boundary conditions at the barrier
points q1,2 gives the relaxation oscillation periods in terms of the current and
the system parameters. The eigenvalue p1 is relatively large compared to p2:
p1 ≈ k′, p2 ≈ 1

k′ . The result is the following asymptotic expressions for the re-
laxation oscillation period T (I ′) and amplitudes in terms of the system control
parameters

T (I ′) → k′ ln


(2q2 − q1 − I ′)(I ′ + q2 − 2q1)

(q2 − I ′)(I ′ − q1)


, where k′ =

3

4
√

b
(q1 − q2)

2

(7)

Vmax = 2q2 − q1, Vmin = 2q1 − q2 if q1 < I ′ < q2, and ∞ otherwise (7’)[
q1 < I ′ < q2] and [T → ∞, V → 0, otherwise] .

where q1,2 are from Eq. (2) and k′ follows from k = 3√
b

and its definition in

Eq. (6). Derivation of this result is given in the Appendix. This expression
for the period demonstrates logarithmic approach to steady state behavior as
I ′ approaches the barriers I ′

1,2 = q1,2 [T → ∞]. Furthermore, the period is

a minimum at Imin = q1+q2

2
, at which point Tmin = T (Imin = 2k′ ln 3 which

is identical to the asymptotic period of the symmetric Stoker-Haag oscillator
[Stoker, 1950; Phillipson & Schuster, 2001].

10



5 Discussion: A Spiking Model

The F-N model of Eq. (1) is a particular example of two dimensional dynam-
ical systems dV

dτ
= F (V, Y ), dY

dτ
= G(V, Y ) that facilitates the construction of

nullclines and phase plane analysis which are powerful tools for the analysis of
bifurcation and oscillation phenomena [Murray, 1989; Izhikevich, 2000]. The
present approach considers dynamical mechanisms expressed as N coupled
first order nonlinear differential reformulated as one N − th order nonlinear
differential equation. The passage to Eq. (2) is an example for N = 2, The
analysis of Nagumo et. al of neuron conduction is an example for N = 3 as
well as later bifurcation studies of some canonical three dimensional systems
[Phillipson & Schuster, 2000]. For the present example, the consequent Re-
duced Model of Eq. (3), preserving to close approximation the pulse dynamics
and of the F-N model, facilitated approximate analytical determination of the
period and extrema of the pulses in terms of the physiological parameters
[a, b, ε] of the system. The subsequent Reduced Broken-Linear Model allows
for exact solution with a qualitative change in the pulse shape from convex to
concave. The former is more in accord with the H-H model, yet it is of inter-
est to note that the latter is demonstrated under certain parameter conditions
by the Morris-Lecar model [Morris & Lecar, 1981]. The three physiological
parameters, upon adjustment, can change the pulse form to a limited extent.
In particular reducing the stiffness constant can produce almost harmonic
oscillations also demonstrated by the Morris-Lecar model.

The Reduced Broken-Linear Model by having explicit solution Eq. (6) provides
an analytic mechanism spiking model. The pulses would be observationally
characterized by their height [Vmax], depth [Vmin], and period T . The spiking
model is posited to be exactly Eq. (3) according to q1 = Vmax+2Vmin

3
, q2 =

Vmin+2Vmax

3
from Eq. (7’) and the spike periods given by Eq. (7). An example of

such a spike is the red pulse in Fig. 2. In principle, these observational quanti-
ties are related to the physiological parameters [a, ε] by q1,2 defined in Eq. (2).
The period of the pulse is asymptotically proportional to the stiffness constant

which is a sensitive function of b according to b
1
2 = 3(q1−q2)2

4k′ . A spike occurs
whenever the action potential crosses the threshold at q1 and recrosses it again
after period T of Eq. (7) without resetting the action potential characteristic
of the Integrate and Fire model (which can be related by transformation to the
spiking displayed by the canonical Class I model) [Gerstner & Kistler, 2002].
If one considers more general synaptic inputs produced by the current most
generally being a function of time, the driving terms in Eqs. (2,3,4) include
both I(τ) and dI

dτ
for which analytic solutions for arbitrary I can be simply

arrived out for the Reduced-Broken Linear Model. In particular, a periodic
I(τ) can produce multiple periodicity, bistability, entrainment and chaos for
the same dynamical reasons that they arise in the harmonically forced van
der Pol equation or its Broken-Linear reduction of the harmonically driven
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Stoker-Haag equation [Phillipson & Schuster, 2001]. Linearization of the F-
N equations around fixed points in its phase plane representation with an
imposed time dependent input has demonstrated some of these phenomena
[Di Garbo et al., 2001]. In the present formulation, which will be explored,
Eq. (4) represents an alternative dynamical description which by construction
is global.
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Appendix: Calculation of the period in Eq. (7)

Figure 3 shows a representative closeup solution [I = 0.3] of the Reduced
Broken-Linear Model, Eq. (4) for V (τ) (black curve) and v(τ) ≡ dV

dτ
= dx

dτ
(red

curve). Following a procedure identical to that applied to calculation of the
period for the symmetric oscillations of the Stoker-Haag oscillator [Phillipson
& Schuster, 2001] we consider the system initially at point a at the lower
boundary: V0 = q1 = I ′ +x0, v(0) = vs1 and arriving at point b at some time
T1 such that V (T1) = q2 = I ′ + x(T1), v(T1) = vf1 where from the velocity
curve it is seen that vs1 << vf1. Then from Eq. (6) for σ = −1

x(T1) = q2 − I ′ =
vs1 − p2(q1 − I ′)

p1 − p2

exp(p1T1) +
p1(q1 − I ′) − vs1

p1 − p2

exp(p2T1)

(A.1)

v(T1) = vf1 =
p1

[
vs1 − p2(q1 − I ′)

]
p1 − p2

exp(p1T1) +
p2

[
p1(q1 − I ′) − vs1

]
p1 − p2

exp(p2T1)

(A.2)

so that

exp(p1T1) =
(p1 − p2)(q2 − I ′) −

[
p1(q1 − I ′) − vs1

]
exp(p2T1)[

vs1 − p2(q1 − I ′)
] (A.3)

vf1 = p1[q2 − I ′] +
[
vs1 − p1(q1 − I ′)

]
exp(p2T1) . (A.4)

Since p1p2 = 1, from Eq. (A.3), T1 ≈ p2 ≈ 1
k′ → 0 and to the same approxi-

mation vs1 → 0 [Phillipson & Schuster, 2001] so that Eq. (A.4) establishes vf1

according to

vf1 ≈ p1(q2 − q1) → k′(q2 − q1) . (A.5)

From point b the system evolves through an oscillation maximum and then
back to the upper barrier in the asymptotically longer time T2 such that at
point c V (T2) = q2 = I ′ + x(T2), v(T2) = vs2. Then from Eq. (6) for σ = +1,
with exp−p1T2 ≈ exp−(k′T2) → 0

x(T2) = q2 − I ′ =
vf1 + p1(q2 − I ′)

p1 − p2

exp(−p2T2) →
[vf1

k′ + q2 − I ′] exp(−T2

k′ )

(A.6)

so that with the use of Eq. (A.5)

T2 → k′ ln

[
2q2 − q1 − I ′

]
q2 − I ′ (A.7)
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Fig. 3. Close-up of a typical relaxation oscillation of the Reduced Bro-
ken-Linear Model, Eq. (4) with I = 0.3. Shown are the potential V (τ) (black
curve) and the velocity v ≡ dV (t)/dt (red curve). This figure illustrates the ele-
ments for the period and pulse maximum, minimum of Eqs. (7,7’) as derived in the
Appendix. The system points shown area: V = q1, v = vs1; b: V = q2, v = vf1; c:
V = q2, v = vs2; d: V = q1, v = vf2. The analytic expressions for the pulse period
are in the asymptotic approximation that vs1,2 ≈ 1

k′ → 0, vf1,f2 ≈ k′ >> 1. This
is tantamount to neglecting the transition times between the barriers compared to
the time spent above and below the barriers.

From point c the system point again enters the inter barrier region at V0 = q2

with the asymptotically small speed vs2 and making again a fast transition
in time T3 to the lower barrier such that x(T3) = q1 − I ′, v(T3) = vf2. From
Eq. (6), again with σ = −1 with the same approximations used in traversing a
to b, one obtains vs2, T3 → 0 and vf2 → −p1(q2 − q1) = −vf1. The oscillation
is completed when the system makes its final excursion from point d to the
beginning point a in long time T4 such that x(T4) = q1 − I ′, v(T4) = vs1 → 0.
From Eq. (6) with σ = +1 one obtains, similar to Eq. (A.6) for the path from
b to c

exp(−p2T4) ≈ (p1 − p2)(I
′ − q1)[

p1(I ′ − q1) − vf2

] (A8)
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so that asymptotically

T4 → k′ ln

[
I ′ + q2 − 2q1

]
I ′ − q1

(A9)

The period of oscillation, T = T2 + T4 using Eqs. (A.7,A.9) gives Eq. (7).

For the pulse maximum we assume a time duration Tmax from the time the
system point makes a fast transition from point b [x(0) = q2 − I ′, v(0) = vf1]
to the pulse maximum Vmax. Similarly, there is a time duration Tmin for the
system point to make a fast transition from point d [x(0) = q1 − I ′, v(0) =
vf2 = −vf1] to the pulse minimum Vmin. The solutions during these times are
for σ = +1 and with the use of Eq. (A.5) they are given by

Vmax ≈ I ′ +
[
p1(q2 − q1) + p1(q2 − I ′)

p1 − p2

]
exp(−p2Tmax) (A.10)

Vmin ≈ I ′ +
[−p1(q2 − q1) + p1(q1 − I ′

p1 − p2

]
exp(−p2Tmin) (A.11)

Calculation of dV
dτ

= 0 at time T ′ ≡ Tmax,min shows that asymptotically,
exp(−p1T

′) ≈ p2
2 → 0 resulting in neglect of this term in the solution of

Eq. (6). Similarly, exp(−p2T
′) ≈ (p2

2)
p2
2 → 1. With this result,and neglect-

ing p2 ≈ 1
k′ << 1 compared to p1 ≈ k′ >> 1 Then the I ′ terms vanish in

Eqs. (A.10,A.11) resulting in Eq. (7’) for the pulse maximum and minimum.
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