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Abstract

Walking through life can be fun and interesting, dull and boring or simply frustrating. Our walk is based not
on our talents but on our decisions. Our skill in making decisions that add a little spice to each day depends
on our ability to bring together facts and concepts, develop a picture of the desired outcome and then make
a decision that brings us closer to that outcome. In our experience, making decisions is simplified if one
understands what we call “main ideas”.

We emphasize main ideas because most of us have difficulty remembering unrelated facts. For us, our
memory works best when there is a framework, or scaffolding, on which we can hang facts and concepts. The
scaffolding provides the links between facts and concepts that help with recalling and manipulating some of the
stuff in our memory. The simplest scaffolding is built from main ideas that often reflect an oversimplification
of an area, but nevertheless, provides the essential framework for building an understanding of more complex
systems.

The Internet and efficient search engines allow us to focus our energy on understanding main ideas
rather than memorizing all of the facts and concepts associated with a particular area of interest. In the 21st
century we can justifiably question cluttering our memory with detailed knowledge when we can retrieve this
knowledge from an Internet search and quickly reconstruct the details from our scaffolding built from main
ideas. The concept of building our framework by concentrating on main ideas is simply a more efficient way
of thinking. Moreover, it is an efficient way of educating oneself. Main ideas feeding the construction of
scaffolding, mized with a good dose of curiosity, provide the substrate for life-long learning and restore the
fun of learning. Within this context, education is no longer arbitrary and something we are simply told to
do. Instead it is fun because the process of discovering a new main idea, adding to our scaffolding, gaining
a new insight and trashing irrelevant knowledge is refreshing.

How do we identify what to learn and what we can safely disregard? We find problem-based learning to be
the tool for separating the information we need to solve a particular problem from what we can safely ignore.
Content-mastery requires we start at the beginning of a book and learn all the stuff between the first and last
pages. We can be easily evaluated by testing what we remember. Success with problem-based learning requires
we readily identify what we don’t know. We identify what we don’t know with mental images. If we can paint
an unambiguous picture of what we are thinking about then we have no gaps in our understanding. If there
are gaps in the picture, then new learning is necessary. If we easily recognize what we don’t know then when
we start to solve a new problem, we quickly realize the gaps in our tools for solving this particular problem.!
Our approach here is to provide you with the main ideas or concepts upon which you can acquire enough new
knowledge to solve a problem of interest. Our approach to main ideas is based on mastery of three concepts:
problem-based learning, Internet-searching and Internet-memory.

Here we present main ideas (or central concepts), acquired over the past 35 - 40 years, that have facilitated
work in areas ranging from cardiac pharmacology to biostatistics to software engineering. In addition, we
present some HOWTO segments that introduce you to tools we find generically useful: octave for modeling,
xmgrace for displaying data, cvs for collaboratively developing a document or software. The underlying theme
of “main ideas” is the fun of learning derived from the beauty and elegance of simple yet powerful concepts.
Simple concepts usually arise from simple questions and simple questions more often arise from children
than from adults. Perhaps one of the most challenging activities for us as adults is to rediscover the fun of
learning through asking childishly simple questions.

1Here our educators have to solve the problem of how to test our problem solving skills instead of our skill in memorizing.
This is a topic for another paper.



Chapter 1

Why Create Models?

1.1 Introduction

Problem-solving is the core of a service-based econ-
omy. Problem solving requires thinking and thinking
is best accomplished within some frame of reference
which we call scaffolding. We have found that some
educators are beginning to realize the importance of
scaffolding in the process of critical thinking, but we
have found very little about identifying individual
components of the scaffolding. We believe (actually
assert) that main ideas, i.e. the underlying theme
of some process or activity, is a piece of scaffolding.
Model building is a means for focusing on and identi-
fying “main ideas,” a concept that promotes efficient
problem solving and is becoming more and more vi-
tal in our world. Thus, before we explain why one
would want to create models, let us first explain the
significance of main ideas.

1.2 Education: The Proper
Balance of Memorizing,
Understanding and Think-
ing

For the US, Canada and Europe, the 21st cen-
tury has seen a shift in our industrial base from
a manufacturing-based economy to a service-based
economy. Service, of course, is problem solving and
problem solving requires thinking. If we find a way to
make problem-solving both fun and profitable, then
it is highly likely that we’ll enjoy an interesting life.

Our brain is capable of four primary functions:
memorizing, where we store facts and concepts, un-
derstanding, which is how we take a concept and ex-
tend it to a different setting, thinking, where we build
new concepts from stored facts and concepts and do-

ing, where we perform some task. There is consid-
erable evidence that storing information results in
structural changes in our brains. Thus each fact we
memorize creates some sort of structure that we can
draw on for future use. Because there is a structural
basis of memory, we must realize that unlearning a
fact or a reflex requires possibly more energy than
that required for the initially storing the fact or de-
veloping the reflex.

1.3 A digression: the biological
basis of memory and learn-
ing

Eric Kandel and his laboratory [?, 7, ?] used the
sea snail (aplysia) to demonstrate the mechanisms
that implement neuronal learning. Exploring the
siphon withdrawal reflex!, they found that learning
was activity-dependent. That is, training (repeated
stimuli) that occurs frequently appeared to result in
more reliable learning than infrequent stimulation.
Since memory is not magic, then there must be a
change within a cell or within a network of cells that
reflects the learned or memorized element. Our guess
is that short term memory is probably the result of in-

IThe siphon is used to facilitate the snail’s breathing. When
aplysia breathes, water is drawn across the gill from the front
and exits through the siphon. The siphon is usually outside of
the snail’s shell or mantle. However, when gently touched, the
snail will withdraw and protect its siphon for a short period of
time. If this touch is preceded by an electric shock to the tail,
the snail will withdraw its siphon for a longer period of time.
The snail will continue to have this exagerated response for up
to a day following the shock, and thus, is an example of short
term memory. Multiple shocks given over multiple days cause
this exagerated response to become even more exagerated and
retained for much longer. Even after a week since the elec-
tric shocks, the snail will continue to exhibit the exagerated
behavior, and this is an example of long term memory.



tracellular accumulation of calcium?, Ca, associated
with repeated training episodes. Long term memory
probably reflects structural changes, either an am-
plification or attenuation of expression of a cellular
signal receptor or channel.

If short term memory is the result of the accumu-
lation of intracellular Ca, then there must be some
means for controlling this accumulation. An action
potential® of some duration is generated each time
a cell is excited by a suprathreshold stimulus. The
action potential represents the competition between
inward (depolarizing) and outward (repolarizing) cur-
rents and its duration reflects the magnitude of the
net inward or net outward current (net current =
inward - outward). An inward sodium ion, Na*, cur-
rent flowing through sodium channels is usually re-
sponsible for initially depolarizing a neuron and gen-
erating an action potential. An outward K current
is usually responsible for restoring the charge bal-
anace that is altered by the influx of Na. Because
calcium channels are open at potentials more pos-
itive than the sodium channel activation potential,
they are open during a large portion of the action
potential. The length of time the calcium channels
remain open is determined by the duration of the ac-

2We are assuming calcium, Ca, is the agent responsible for
short term memory because it is probably critical for neuro-
transmitter release required to signal adjacent neurons. More
intraceulluar Ca would trigger an increase in the release of
pre-synaptic neurotransmitter which would then activate more
post-synaptic receptors, giving a larger post synaptic response.

3A brief primer in electrophysiology: Membrane Potential
is the result of a difference in the relative concentrations of
positively and negitively charged particles on opposite sides of
a cell’s plasma membrane. Cells that have the ability to main-
tain an a transmembrane gradient in charged ions (and thus
generate a membrane potentials) and can rapidly change their
membrane potential following a suprathreshold stimulation are
called ezcitable cells.

An excitable cell is either in the rest state where the trans-
membrane potential is -50 to -80 mV or in the excited state
where the transmembrane potential can become as large as
+40 mV for a few milliseconds. The electrical response to
suprathreshold stimulation is called an action potential (see
Figure ?7?) and is caused by the rapid influx of a + charge car-
rier (either Na or Ca). The restoration of the charge balance
is accomplished by a slower efflux of a + charge carrier (K)
from the intracellular fluid. However, the charge redistributu-
ion alone is insufficient to keep the cell healthy.

The charge carriers must also be redistributed - which is a
regulatory process that takes place in the background of cel-
lular activity. Because charge flow during the action potential
is down concentration gradients, it is physically impossible to
restore the charge carriers without active transport up the con-
centration gradient by actively exchanging ions between the
extracellular and intracellular fluids. The Na-K transporter is
an example of an active transporter that exchanges extracel-
lular K for intracellular Na.

tion potential, which in turn is determined by the
amplitude of the repolarizing potassium current(s).
Large Kt currents will rapidly repolarize the cell
while small KT currents will prolong the duration of
the action potential. Consequently, the calcium in-
flux can be controlled by altering the the availabil-
ity of potassium channels. Some potassium chan-
nels are activated by intracellular second messengers.
These receptor-linked channels are sensitive to extra-
cellular neurotransmitters (ACh, serotonin, GABA,
dopamine) and provide a way of communicating ex-
tracellular events (presence of a neurotransmitter in
the vacinity of a membrane-bound receptor) to an in-
tracellular process (generating an action potential).

When the time between training episodes (activa-
tion of a channel or activation of a receptor) is greater
than the time required to restore the balance of intra-
cellular agents reflecting short term meory, then there
will be no accumulation and thus no learning. Its easy
to understand why rereading a poem 1/year is less
likely to result in memorizing the poem than reread-
ing it 1/hour. If, on the other hand, the time between
training episodes is less than the restoration time of
the intracellular Ca, then the intracellular [Ca] will
increase until a threshold is reached (my guess). The
protein expression machinery is probably activated
when this threshold is exceeded - resulting in either
expressing something new, or amplifying/attenuating
the expression of existing cellular component, for ex-
ample, a receptor, such that the cell will have a per-
manently increased sensitivity to a circulating neuro-
transmitter. We speculate that short term memory
reflects accumulation of something while long term
memory reflects a structural change in the cell or cel-
lular network.

Given this view, its interesting to look at forgetting
and unlearning. The less something is used, the more
likely it will be forgotten. On the other hand, some-
thing that is frequently used will be reinforced. To
unlearn a frequently used habit thus requires signifi-
cant expenditure of effort - either to reverse the struc-
tural changes or to disable the structrual changes. If
someone want’s a great research project - we sug-
gest exploring the molecular process of forgetting -
to complement Kandel’s work on remembering.

This model suggests a main idea: Repetition is es-
sential for most types of learning. We’ll simply state
that Repetition is the first law of learning!



1.4 Trading memorizing for

thinking

It is obvious that each minute spent memorizing is
one less minute available for thinking. Thus, it is
reasonable to ask, “what is the appropriate balance
between time spent learning, memorizing and think-
ing?”

Learning takes place in many forms, we are sure,
but for us, learning is easiest when we have a frame
of reference, a sort of mental scaffolding or mental
picture, on which we can hang new facts and extend
our understanding. Main ideas are the structural el-
ements of our mental picture or scaffold. Usually, we
start with an over-simplified view of some concept
- with just the most primitive framework. We then
add detail as necessary that completes enough of our
picture so that we can readily visualize the answer
to some question (our problem). Its obvious that we
will not often need the completed picture in order
to answer a question - but only that segment of the
picture that is relevant to our immediate question.

Where do we obtain the detailed elements used to
build our picture? The internet and commodity com-
puting provides an adjunct to our memory in such a
way that our faulty human memory can be replaced,
in many respects, by a faultless internet memory.
These computer memories, distributed around the
world and connected by the internet, create the possi-
bility of an internet-centric work environment where
our thinking is augmented by internet access to in-
formation resources around the world. If you accept
this paradigm, then education should shift its empha-
sis from traditional learning (with a dominant memo-
rizing component) to problem-solving where thinking
dominates.

Problem solving is facilitated by:

e (Clear problem statement.

e Subdividing the problem into atomic compo-
nents.

e Solving (experimentally) components, while
building a solution that combines the the com-
ponents in a way that can be evaluated at each
stage of development.

e Utilizing information obtained from as many
sources as possible for the solution synthesis pro-
cess.

The last item indicates that access to information is
critical for problem solving and thinking. In our opin-
ion, the ability to use google represents an essential
skill for problem solving worthy of association with
reading, writing and arithmetic. Google is the 21st
century tool that enables us to capitalize on machine
memory of distant facts and bring them to bear on
our problems of today.

1.5 Problems Vs. Disciplines

As we progress in our education, we find ourselves
specializing in a specific discipline. Some of us study
physics, others study genetics or statistics. These
different disciplines have, over the years, been created
by a rather arbitrary process. Where does biology
stop and chemistry start? Or, where does chemistry
stop and physics begin? Thus, it comes as no surprise
that real problems do not always fall nicely into a
single discipline. In fact, it is the gray areas that
fall between disciplines that often offer us the most
interesting problems because it is only these problems
that allow us to see the big picture. As a result,
multi-disciplinary is becoming the new buzz word in
the scientific community.

Hundreds of years ago there were so called Renais-
sance Men. Men and women that understood the
details in many different fields and could successfully
contribute significant findings to all of them. Over
time, however, each discipline became more and more
of an island due to the massive amount of discovered
knowledge and the impossibility of one man being
able to master it all. Each new concept was built on
an increasingly formidable hierarchy of existing the-
ory within a particular discipline.

While the general trend for each discipline to be-
come more and more specialized as it becomes rich
with knowledge has not changed, our ability to access
the information has. When books and libraries were
our only source of information, it was not feasible to
have collections of reference books for all disciplines
within reach on our desk at the same time. Not only
was the possibility of having a library that contained
them all incredibly small, but our desks were simply
not big and strong enough to hold them. Even if we
did have access to the books we would need to be-
come our own renaissance man, there was no means
to efficiently search through them.

With the internet and search engines, we solve all
three problems Our desks only need to be strong
enough to support a computer (and often times, a



laptop computer does not even need a desk), almost
all of modern scientific knowledge can be accessed
through the internet and we can efficiently search
through it all with google. Quick and easy access
to information allows us to now focus on the main
ideas without having to be bogged down with mem-
orizing all of the details. The details are right at our
fingertips when we need them.

This body of work that you are now reading repre-
sents information obtained from personal experience,
which has allowed us to isolate and identify what we
are calling “main ideas” from our own thinking, books
and the internet. When this project began, almost all
of the text was derived from books and personal ex-
perience. However, at this point, the vast majority of
the writing is inspired by information found on web

pages.

What we observe:
and noise

1.6 signal

THE MAIN IDEA - Distilling insights from
observations:

Our sensors detect change comprised of an in-
formation bearing signal and noise. We process
our perceptions with a variety of variance-reducing
tools in order to make the signal more obvious.
Signal processing, applied to either time or spatial
sequences of values, are used routinely in electri-
cal engineering to identify signals or restore sig-
nals. Biological sequences naturally arise within
the genome and in proteins. The same tools found
useful in extracting signal from noise in electical
signals should be useful in extracting biological
messages from these sequences. The trick is to
discover how to represent an amino acid or a nu-
cleic acid such that the message becomes obvious.

When I run an experiment, I have two types of
models running around in the back of my head. One
is a model of the underlying process that I am study-
ing, mechanisms of ion channel blockade. This model
is a piece of cake. I make measurements, then fit the
measurements to the values predicted by the under-
lying physical model of ion channel blockade.

But also an implicit model is running around in the
back of my head. An implicit model that reflect data
manipulations I do in order to salvage results from
an experiment, that for whatever reason, is not sta-
ble. For example, it is well known that in whole cell
voltage clamp studies, the preparation "runs down”

over the course of the study. By this I mean that
if you do nothing except make a measurement (peak
Na current), every minute for 20 minutes, the results
will show a gradual reduction of peak Na current -
perhaps as much as 10 - 20 percent, sometimes even
larger.

1.6.1 How Normalization Can Change
Your Model

When an experimentalist have rundown in a prepara-
tion, the traditional analysis strategy is to ”normal-
ize” the data - i.e. to make a measurement, apply the
intervention (superfusing the cell with a drug) and di-
vide or subtract (depending on the situation) the first
” control” result from each of the measurements made
during the intervention. Then the next intervention
would be to wash out the drug by superfusing with a
drug-free solution. If there has been little rundown,
then the peak Na current after washout will be similar
to that before the drug was applied. This, however is
rarely the case.

With normalization, we are imposing a model on
the data. We are assuming that the changes in our
measurements are due only to rundown or the inter-
vention and nothing else. Often this is the case, but
there are situations where this is not the case.

Consider the study of lidocaine block of cardiac
Na channels. It is well known that the fraction of
blocked channels changes with the transmembrane
potential of the cell. Hyperpolarized cells experience
little block whereas depolarized cells experience sig-
nificant block. Now we study the voltage dependence
of lidocaine block. We make a control measurment,
apply the drug, make measure the fraction of blocked
channels associated with each pulse of a train of de-
polarizing pulses. Then we depolarize the holding po-
tential, and repeat this protocol: control pulse, train
of pulses.

Now, since we know that lidocaine blockade is de-
pendent on the transmembrane potential, (holding
potential), if we divide each current measured dur-
ing the train of pulses by the control pulse, we cor-
rect not only for rundown, but also we abolish the
known voltage dependence of lidocaine blockade. Su-
perposition of an explicit and implicit model occurs
often, simply because the experimenter is unaware
that normalization of data actually carries with it,
an alteration of data that is equivalent to adding a
component to the model. Unfortunately, this hidden
addition to the model goes unnoticed and analyses



can lead to incorrect conclusions due to confound-
ing of effects described by the explicit and implicit
model.

1.7 Models Reveal Main Ideas

THE MAIN IDEA - Problem Solving is
Modeling:

The essence of problem solving is building a
mental image of the problem. Often the mental
image can be characterized with symbols, a graph
or an equation related to some physical concept.
The process of developing this mental image is
called modeling.

We can develop a model at different levels of com-
plexity. We can decide that we want to reproduce
behavior at the 17th decimal point of precision, or
we can decide that we are comfortable if we only get
the direction of the behavior correct. The decision
about the level of precision we are trying to capture
with our model is a form of abstracting the problem.
When we abstract a problem, we attempt to decide
what is relevant and what is irrelevant.

Typically, when we create a model, we start with
the simplest, first order, behavior. The goal is to
try to get this right without worrying if the time and
space scales are correct. This is because if we can not
get the first order behavior right, then it is a waste
of time to try to get the spatial and temporal scales
correct. Thus, at different levels of model building,
different levels of detail are relevant. Another reason
for starting with a first order approximation is that
sometimes that is all you need. If, when you press
deeper into the problem, the first order model works,
and it continues to work for each successive level of
complexity, then we have stumbled on a “main idea”.

Even if we are not so lucky, as we try to characterize
the abstractions of multiple instances of our problem,
we may begin to see common denominators. This
common denominator is a “main idea”, and is the
scaffolding around which we can build very complex
descriptions of what we observe.

For an example of this latter method of uncovering
“main ideas”, consider the problem from cardiology
of reentrant cardiac arrhythmias. In normal circum-
stances, the impulse that initiates cardiac contrac-
tion forms as a continuous wave that propagates away
from the sinus node. Any continuous wavefront in the
heart cannot become reentrant simply because it will
collide with and extinguish itself. On the other hand,

if a wave breaks and becomes discontinuous?, then it
is possible for the residual wave fragments to evolve
into a spiral wave®. Reentrant arrhythmias, rapid un-
controllable reexcitations of the heart, are initiated
from wave fragments or discontinuous waves. There-
fore, forming a spiral front requires that a front arise
in a region with asymmetric excitability where prop-
agation succeeds in some directions and is blocked (or
fails) in other directions - 6. Thus, all reentrant ar-
rhythmias can be understood as resulting from wave
formation in a region with a spatial asymmetry of cel-
lular excitability 7. If you can identify the source of
the asymmetry, then perhaps its possible to correct
it. Since this one concept, asymmetric waves form
as a result of propagation in a region with a spatial
asymmetry in excitability, enables us to have a gen-
eral idea about an entire class of phenomena, we will
call it a “main idea”.

Modeling is thus an essential step toward identify-
ing main ideas, the recurring themes that we see as
we examine different, but related, systems. We will
see this when we explore excitable cells in cardiac tis-
sue and transcription switches® in the DNA of small
organisms.

What follows are some of the main ideas we have
developed about building and then testing models.
We begin with the mathematics and physics required
for model building end with statistics for model eval-
uation. Along the way, we’ll introduce some of the
software issues we have faced as we constructed tools
that promoted our development of main ideas.

4Qur friend, Valentin Krinsky, was the first to articulate
this

5Spirals form from fragments because the ends of the frag-
ment propagate more slowly than the interior segments of the
wave. Why? because the ends must excite not only the cells in
front of them but also the cells to the side - and, because the
cell has a limited charge available to excite adjacent cells, more
time is required to transfer this charge to the larger audience
of adjacent cells

SThis site in the heart is composed of what are called pace-
maker cells

"Four examples for such an asymmetry are: inexcitable ob-
stacles that the wave collides with, cellular coupling, as de-
scribed by Maddy Spach, dispersion of refractoriness, or a spa-
tially inhomogeneous distribution of potassium channels.

8Both excitable cells and DNA transcription involve
switches. Switches are either on or off. The phase plane of
any system with two stable states requires a third, intermedi-
ate state that is unstable and possibly oscillatory.



Chapter 2

How to create a model

2.1 Introduction

THE MAIN IDEA - Scientific Research:

The goal in scientific research is to identify the
underlying mechanism that is responsible for some
phenomena. Great joy and fun is derived from
identifying generic mechanisms, mechanisms that
are shared by many different phenomena. The
generic mechanism is the core concept or theme,
while the different presentations of this theme are
like different variations on that theme.

What is an example of a core concept and some
variations? Frank’s research over the past 20 years
has focused on reentrant cardiac arrhythmias and
the potential role antiarrhythmic drugs might play in
amplifying the potential for triggering reentrant ar-
rhythmias. Under normal condition, the membrane
potential of a group of pacemaker cells oscillates with
a frequency of about 1/min. Each time the mem-
brane potential exceeds a threshold, neighboring cells
are excited and a wave of excitation propagates away
from the pacemaker region. Because the heart is a
closed surface, this wave will eventially collide with
itself and thereby is extinguished (due to a property
called refractoriness).

A reentrant arrhythmia is one where the excitation
wave circulates around the heart without colliding
with another wave and therefore is capable of reex-
citing the heart. Clearly, a continuous front can never
become reentrant. However a discontinuous front can
evolve into a reentrant process [?]. The variations
of the theme of discontinuous fronts are all the dif-
ferent ways one can make a discontinuous wave: by
premature excitation, by collision of a front with an
obstacle, by excessive front curvature and by encoun-
tering non-uniform refractory states. Each variation
has specific detail that is required for the mechanism
to successfully function within a specific environment.

THE MAIN IDEA - Models:

A model is an abstraction of a real world phe-
nomenon. We can never make a perfect model, but
we can build models that are sufficiently accurate
that it is difficult to distinguish between them and
the real world.

Typically, one begins by creating a model of a
specfic event or phenomenon. However, over time,
one might notice that the model applies to other
events or phenomena and can be used to answer ques-
tions that are completely unrelated to the original
intent, thus, demonstrating the potential for gener-
alizing the model. To be able to demonstrate that
a model, as representing some physical mechanism,
generalizes to describe processes in many different
settings is the greatest thrill possible.

The main challenge in biology is identifying pro-
cesses, mechanisms and developing an understand-
ing of the minimally complex representation. But
before starting to model, we ask, about what fea-
tures the model must represent. For example, we
view a living organism as requiring 6 essential pro-
cesses: metabolism (converting nutrients to energy
sources), translation (translating an electrical signal
to motion), signaling (transfering the representation
of an event from one place to another), replication
(duplicating something) and regulation, If we model
an organism, then probably these features must be
included in the model. Such models are quite use-
ful, because we can use the model of one entity as
a template for investigating and characterizing an-
other. For example, at the level of the nucleus. ex-
pression could be considered as replication, signaling
could reflect the initiators and terminators of expres-
sion, metabolism could reflect the supply of raw ma-
terials to the expression system etc.

For all these complexities, though, it seems that
linear models are adequate to describe many pro-
cesses. Not that these processes are inherently linear.
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Figure 2.1.1: A Saturating Process: A frequently occurring
nonlinearity in biological systems A dose-response curve of a
saturable receptor reaction where U = unoccupied sites and
O = occupied sites.

Rather most likely, the range over which we can ex-
plore them is small, and the processes appears linear.

THE MAIN IDEA - The Essential Nonlin-
earity in Biology:

For nonlinear models (and processes) a primary

source (often the dominant source) of the nonlin-
earity is derived from saturable processes. That is
to say, there is a finite concentration of receptors, a
finite amount of enzyme or a finite amount of neu-
rotransmitter and all of them can be completely
used up or saturated.
In the case of a finite number of receptors, with a
huge drug concentration, all receptors are occupied -
and increasing the concentration does nothing. Sim-
ilarly, at very small concentrations, no receptors are
occupied - and at intermediate concentrations, some
receptors are occupied, leading to the sigmoid shaped
dose-response curve: represented by b =1/(1+1/kD)
where b is the fraction of bound receptors, 1 is the
reverse rate constant, k is the forward rate constant
and D is the drug concentration. When D is small, b
= 0 and when D is large, b = 1. Below we’ll derive
this relationship exactly.

THE MAIN IDEA - Why Do Linear Models
Work?:

The main idea in analysis: linear models often
work simply because the behavior of the Taylor se-
ries expansion of the “real” function is dominated
by the linear term. That is why linear models in
biological research work so often.

Thus (see below) estimating parameters derived
from linear models is an important statistical tool.

We’ll derive a simple least squares procedure and
hypothesis testing concept that is readily generalized
to nonlinear and categorical data models.

THE MAIN IDEA - Statistics: using our
models:

A main idea in statistics is to characterize a pro-

cess in such a manner that you can test the sensi-
tivity of the process to some intervention and de-
tect it. Linear statistical models work quite well in
biology because (in our opinion) the linear compo-
nent of a Taylor expansion dominates the behavior
of the system.
In addition, the fact that many nonlinearities are
derived from saturable processes results in simple
linear approximations of the saturable process: 3
lines - one for low concentrations, one for interme-
diate concentrations, and one for near saturable
concentrations. Unless you happen to be operating
near the knees of a saturable process, linear models
work really well.

One of the main products of statistical theory is
that parametric procedures (which assume normally
distributed variations) usually give the same answers
as their non-parametric sisters. This is due to the
central limit theorem. The central limit theorem says
that sums of random variates are asymptotically nor-
mally distributed. My numerical studies indicate that
when you have 7 or 8 terms in the series, then asymp-
totic normality rules the day. Thus, we never worry
about the underlying distribution (well almost never)
because we are analyzing sums of random variates
(mean, variance etc) which are asymptotically normal
(or chi square for sums of squared normal variants).

THE MAIN IDEA - How many experiment
must I do?:

A major idea in statistical design is that if you
really have a strong process you are exploring,
then you only need 5 experiments and then you
test the direction of the result after the interven-
tion. If the probability of the random (no mech-
anism) outcome is 0.5 (1/2) then if you obtain
the same directional result in 5 consecutive exper-
iments, the likelihood of that happening by chance
alone is (1/2)% = 1/32 = .03 < .05, the magic type
1 error threshold.

Model building can be based on algebraic equations
or differential equations. When do we use which?
The main idea with differential equations can be best
viewed by comparing with algebraic equations. Solv-
ing algebraic equations results in finding points that
satisfy the equations, while solving differential equa-
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Figure 2.2.1: Graphical Taylor analysis, the approximation
includes only the linear term

tions results in finding functions that satisfy the equa-
tions. Here we show how differential equations arise
in ordinary problems and how to solve a simple first
order linear ODE (ordinary differential equation).
With these tools, you can run over any boulder.

Modeling is simply translating a physical process
into some equations that describe the physical pro-
cess. Thus, the idea is to get a mental image of the
process to be modeled, then using basic physical and
chemical concepts, write the ODEs or PDEs that de-
scribe the process.

2.2 Taylor Series

Often times you are working with awful functions as
part of some analysis. They are impossible to inte-
grate or differentiate or to find the roots of. As with
many things, the trick is to find a reasonable approx-
imation that is simple enough to work with. The
Taylor Series allows you to do just that. With it you
can decompose any complex function, f(z), into an
infinite series. Often, a truncated series will be used
for for the analysis. For example, you might end up
using only the first two terms of the series (the linear
portion of the approximation). The difference be-
tween the value obtained from the infinite series and
the truncated series can be called ”error” or noise.

The Taylor Series, or Taylor Expansion of any func-
tion, f(z) is defined as:

(z —a)?

f(@) = f(@) + f'(a)(z —a) + f"(a) 5,

(z —a)"

+ -+ f™(a) — + remainder. (2.2.1)

The first two terms are the most important because
this is the linear approximation. It says that for any
function, f(x), you can create an approximation of it
around any point, a, by looking at the slope of the
function at f (a) and multiplying it by the distance
between a and another point you want to know some-
thing about. It is a straight line approximation, the
value of the function at the point, z = a added to the
derivative 2—£Am.

Example 2.2.0.1 (Approximate Exponential)

To demonstrate the how the Taylor series can gener-
ate an approximation function for f(z), we will de-
fine f(z) as an exponential function and create an
approximate function around zero. That is, we will
let f(z) = e ** and a = 0. Since , f'(z) = —Xe™*?,
the linear portion of the Taylor expansion is:

f(@) = f(0) + f'(a)(z — 0)
=14 (=N)(z).

If we want to know e~** at = 0.1, when A\ = 2
then

e~ =1+4(-2)(0.1) =1-0.2=08.

Compare this approximate answer to the correct an-
swer to 6 decimal places, 0.818731.

Note, if —Az is positive, then the series will di-
verge. However, when the exponent is negative, the
series converges. That is, the signs of each term in the
approximation will alternate. Thus, for some analy-
ses, we can replace e*® with 1 + Az and continue the
analysis. ||
THE MAIN IDEA - Why mess with a Tay-
lor Series:

The main idea behind using the Taylor Series is
that you can make a linear approximation of some
function so that you can then analyze the behavior
of the linear function. We usually know how to
analyze linear stuff because it is often times well
behaved. Nonlinear analysis requires tricks and
we are not well versed in nonlinear tricks.

2.2.1 Reverse Engineering

Sometimes you are faced with an equation that ap-
pears to be a guess by someone. Is there a way to
figure out what it approximates? This is particu-
larly true with difference equations when someone is
approximating an ordinary differential equation or a
partial differential equation and they state a bunch



of difference equations and one looks a bit spooky.
So here is a way to reverse engineer what is happen-
ing. Typically, the equations involve a function and
a couple of points, say V;_1, V;, Viy1 Now lets expand
the function, V, around point i as

Viei =Vi— Az« V] + Az?V" /24 ...
Vit = Vi+ Az V) + Az?V" /24 ...

Now some preliminaries. Suppose we use AV/Ax
to approximate a derivative. We see immediately
form above that

Viii—V;
= + AzV" /2 + ..
Az dz /
which shows that we estimate the left derivative with
an error that is proportional to the 2nd derivative.
To get a sort of unbiased estimator of the derivative
- subtract equation 4 from 5 and you see:

_dVig

av
Vier = Vi1 = 2A$%
or
Vijr =Vier _ dV
2Az  dx

Now this is a nice estimator - Note that dividing
each side by 2Ax gives a perfect approximation of
the derivative - i.e. the higher order terms disappear!

Now let’s say that someone uses the difference
equation V;_1 — 3V; + 2V;;1/A? and we would like
to know what it estimates. So we multiply equation
5 by 2 and add them getting

av v

o1+ 2Vigr = 3Vi + Az—— + 3A2° ——
Ve +2Via = 3Vi + Ao+ 3002

so moving the 3V; to the left we have

Vic1 =3Vi+2Vir  dV da*v

Az dz AT dzx?
The paper where this appeared stated that the above
difference equation approximated the first derivative
- and its obvious that it approximates a bit more than
the simple first derivative.

2.3 Algebraic Models

Some processes are so simple that they can be de-
scribed in terms of algebraic equations, either explic-
itly, or implicitly as the solution to a differential equa-
tion. Algebraic equations are usually defined by ap-
plying some law of physics like conservation of mass

or conservation of momentum or a time or space de-
pendent equation describing the temporal movement
of something. For example this is an explicit alge-
braic model:

age = = — date of birth,

where z is today’s date. An example of an implicit al-
gebraic equation is the description of the time course
of binding of drug to a receptor. The dynamics is
best characterized by a differential equation (equat-
ing changes in the fraction of bound receptors to the
difference between rates of forming and unforming
bound receptors) which has a simple algebraic solu-
tion:
b=1— e (RD+DE

where b is the fraction of bound receptors, kD is the
rate of making bound receptors, [ is the rate of un-
making bound receptors and ¢ is time.

Algebraic models are usually easy to explore be-
cause we can simple generate a sequence of values for
the independent variable and plot the resulting values
of the model’s dependent variable.

2.4 Ordinary Differential Equa-
tions

Models can be built from words or from equations.
We usually start with a word model, or qualitative
model, just to get the central concepts organized. But
qualitative models are difficult to explore and sooner
or later, we find ourselves translating actions in our
word models into equations that describe the quanti-
tative results of these actions. Tools such as matlab
and octave make quantitative models easy to explore.
Simple command line tools, series and tf also give
us a means for exploring algebraic models. series
generates a sequence of numbers of length num terms
from begin to end This sequence of numbers can then
be piped into tf, a tool for evaluating an algebraic
expression and these results can be piped into a plot
tool. Thus, a you can set up an easy pipeline with a
shell command like this:

shell> series begin end num_terms |
tf "algebraic_expression" | plot

and the moral of the story is that numerical tools
enable the model to be used as a simulation of the
real phenomena and certain hypotheses can be tested



against it. Word models, on the other hand, can de-
scribe a process, but are not so easily converted into
computer programs and tested.

Differential equations come in all flavors and sizes.
They basically have the form

((ii_g; = f(y,1),

where f(y,t) can be linear, nonlinear, have constant
coefficients or variable coefficients. Often times y is
a function of ¢t. That is, y = y(¢). The highest or-
der derivative in the equation determines the order
of the differential equation. Differential equations
with only a single independent variable are called Or-
dinary Differential Equations (ODEs). Those with
more than one independent variable are called Par-
tial Differential Equations (PDEs), due to the fact
that the derivatives are partial derivatives. The so-
lution to a differential equation is the unknown func-
tion y(t) that you have the derivative for. While this
may seems backward, in nature, we can observe how
something changes over time, and thus, we can fit a
derivative to this data. From this derivative, we then
try to determine the original function.

A differential equation describes changes in one
variable relative to another variable, and as such, so-
lutions to differential equations are functions that de-
scribe the ups and downs of a function. For example,
y = sin(t) or y = Ae® where y is the dependent
variable and t is the independent variable. The dif-
ferential equation:

dy _

= _b
at Y

(2.4.1)
is an equation that says the change in y(t) for a cer-
tain change in ¢ is negatively proportional to the value
of y(t). In other words, when y(t) is large, the slope
of the solution (dy/dt) is negative and proportional
to y(t) (the proportionality constant is b). As y(#)
becomes smaller, the slope becomes smaller.
The solution to Equation 7? is

y(t) = Ae™ ", (2.4.2)

where the constant A is determined by the “initial
condition”, the value of y(t) when ¢t = 0. If y(0) = 1,
then y(t) = e if y(0) = 100, then y(t) = 100e.
The solution of the differential equation, produces a
“class” of similar solutions, and a particular member
of that class is identified by the initial condition.

Example 2.4.0.1 (Building an ODE)
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Consider a simple chemical reaction. We have a sub-
stance, A, that spontaneously converts to B with a
rate, k, while B spontaneously converts to A with a
rate, [. Schematically, we can notate this with the
equation:

A\%B.

From this, we can describe the change in A as the
proportion of B that converts into A minus the pro-
portion of A that changes into B. That is,

dA

— = [B - kA.

= (2.4.3)

If we enforce conservation of mass so that the com-
bined mass of A and B is always constant, A + B =
Prax, we can now rewrite the Equation 7?7 as

dA
— = (Pmax — 4) — KA.
= = (Paax — A) — k

(2.4.4)

Without explicitly finding a solution to Equation
??, we can determine what it will be when it is at
equilibrium. That is to say, we can determine what
proportion of P,y needs to be comprised of A such
that the amount of B converting to A is the same as
the amount of A converting to B, or kA = I(Pmax —
A). We do this by setting the slope of A to zero and
solving for A:

I(Poax — A) —kA=0
IPax — 1A — kA =

Prax — Al + k) =
A(l + k) = leax
leax
A=
(I+k)
4= Tmax
1+7)
Thus, if
. Pma)l; ’
1+ 3)

then the amounts of A and B will not change.

Now that we know what the equilibrium is, it is
interesting to look at the general solution to Equation
?? because the equilibrium plays a large role in it.
Equation ?? can be solved using various methods. In
Example ?? we show how to use an integrating factor
to solve for A(t) and the result is:

Pmax
A=y




Notice what happens as t gets larger and larger. If
we take the limit, we get

lim A(t) =

t—o0

and thus, the system converges on the equilibrium.
The exponential term simply causes the difference be-
tween the initial condition, the amount of A at time
t = 0, or A(0), the equilibrium to become smaller and
smaller as time passes. ||

Example 2.4.0.2 (Two Componants as One)

Now, consider a two component reaction,
LN
A+B=+=C.
1

This is called a second order reaction because the re-
action rate depends on the concentration of two com-
ponents, A and B. However, under certain condi-
tions, it can be treated as a first order reaction, like
in Example ?7?. When the concentration of A or B is
essentially infinite, and there is a small concentration
of the other component, then we have a pseudo first
order reaction. Here we will show how this is possible
from the differential equation.

We start with a 2nd order equation where the rate
of formation is determined by the concentration of
[A] and [B],

e =kAB - IC.
dt

We assume that As collide with Bs at a rate deter-
mined by the temperature of the reaction and that a
certain fraction of the collisions will result in making
a C'. If the availability of A is infinite so that its con-
centration never changes, the rate constant k& can be
rewritten as a pseudo rate constant k, = kA:

dcC
E = kpB — lC,

and this allows us to treat the second order reaction
as if it were first order. This assumption, that A is
infinite, is often reasonable when A is some sort of
drug compound and B is a cellular receptor for this

compound. ||

2.5 Anatomy of a model

We shall start with the Hodgkin-Huxley equations
that describe the excitable process of a giant squid
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axon. Although much of what follows is our specula-
tion, we suspect that our rationale for each equation
is quite similar to theirs.

The equations that we are about to derive are
based on the definitions of the current-voltage rela-
tionship for different circuit components. Combining
circuit elements alters the total current-voltage rela-
tionship, and hence, the behavior of the circuit. Here
we use V to be the potential difference across the
circuit element, I to be the current, the amount of
charge, ¢, that flows per unit time through the ele-
ment. V', I and ¢ are functions of both time, ¢ and
space, .

1. Ohm’s Law: I = gV, where g is the conductance
(the reciprocal of R, resistance) and represents
the proportionality constant relating current to
the difference in potential across a resistor. This
implies that the current through a resistor is lin-
early proportional to the difference in potential
across the resistor (the relationship used to de-
scribe current through conducting membrane ion
channels).

Definition of Capacitance: ¢ = CV, where C
is the capacitance of the circuit element and is
the proportionality constant relating charge with
potential. This implies that the charge stored
within a capacitor is linearly proportional to the
difference in potential across the capacitor.

Current is the amount of charge that flows/unit
time so taking derivatives of the above, we have:

v
dt’

;o da_
dt
Circuits are constructed by parallel or series com-

binations of resistors, capacitors and inductors, how-
ever, there are few biological analogs of inductors and
we will ignore them in this context. The differential
equations that describe the behavior of a circuit are
derived by applying Kirchoff’s conservation laws to
the circuit:

1. Kirchoff’s Current Law: All of the current that
flows into a node (an intersection of 2 or more
circuit elements) must be equal to the amount
of current that flows out of the node. For exam-
ple, if a circuit element has one input and two
outputs and one amp flows into it, then one amp
must be distributed between the two outputs.



lonic Currents for Vclamp to 0 mV

2000 —

1000 —

-1000 — ‘

-2000 — ‘

Current Amplitude (UA/cm2)
T

-3000 —
L 1(Na)
-4000 | J
5
Time (ms)

Figure 2.5.1: Computed ionic currents for squid giant axon.

2. Kirchoff’s Voltage Law: The sum of the voltage
differences measured around a loop of circuit el-
ements must be zero.

Applying these principles to biological systems
yields equations that can often characterize a surpris-
ingly large amount of behavior. The fun of modeling
is to identify the minimal model required to capture
the behavior of a biological process.

In studies of the relationship between current pass-
ing across the membrane of a squid giant nerve axon,
H-H observed two major currents in response to a
step change in the transmembrane potential, an in-
ward Na current that rapidly turned on (activated)
and off (inactivated), and a slowly activating outward
K current (delayed rectifier) as shown in figure ?7?.
They incorporated a third current, a leakage current,
in order to maintain a balance of current under rest
conditions.

Each current was characterized by Ohm’s law, I =
gV, but because the ionic currents flowed according
to different gradients! , the potential, V', must be re-
lated to the reversal potential?, V;, where i is simply a

Tn the presence of both an ionic concentration gradient
and an electric field, two currents are possible, one derived
from passive diffusion of charge carriers down the concentration
gradient and one derived from the attraction of a charge carrier
by the electric field.

2The reversal potential is the transmembrane potential re-
quired to create a current based on charge attraction that ex-
actly balances the diffusive flow of charge carriers down the
concentration gradient. For example, consider a higher con-
centration of Na outside of the cell than inside. The reversal
potential required to stop the diffusive current is described by

_RT

[Na]o
WWNa = —1
Na F n [Na]l )
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label for the type of current. The total current is thus
the sum of two components, the field component, g;V'
and the ion gradient component, —g;V;. Combining
the two we can write Ohms law as

I = gi(V = Vp).

The effect of the gradient current can be seen in
Figure ?? where the Na current goes from being neg-
ative to positive when the potential is a little over
440 mV. Thus, the reversal potential for Na is +40
mV. For K, the reversal potential is about -80 mV.
The sign and the strength of the reversal potential is
determined by the different gradients of ions.

H-H considered the membrane as an insulator sur-
rounded on each side by a conductor (extracellular
and intracellular fluid). Thus, the membrane acts as
a capacitor where the amount of charge that can be
stored on the insulating surface is ¢ = CV. Postu-
lating that the membrane is composed of ion chan-
nels that control ion flow between the extracellular
and intracellular fluids, the equivalent electrical cir-
cuit is the parallel combination of a capacitor, the
membrane, and 3 conductances, Na, K and leakage.
The current associated with each component of the
circuit can be represented by the terms:

cv
dt
gNabNa(V - VNa)

gbx(V — Vk)
+g9u(V — VL)

Membrane - capacitive current
Na Channels - channel current
K Channels - channel current
Leakage - channel current

where by, and bk are the gating terms and repre-
sent, the fraction of ion channels that are open at a
given time. Thus, if all of the Na channels are open,
then by, = 1 and you get full conductance for Na.
However, if only half of the channels are open, the
conductance is scaled by one half. From Kirchoff’s
current law, the sum of currents flowing into and out
of a node (where circuit element are connected) is
zero, we have

A%
CE + gNabNa(V — VNa) + 9x b (V — Vi)
+9.(V—-V,)=0

To extend the model to include propagation, uni-
directional movement of ions from cell to cell, we

where R is the Rydburg constant, T' is absolute temperature,
F is the Faraday constant, [Na], is the concentration of Na
outside of the cell and [Nal]; is the Na concentration inside.
The equation is is derived by equating the diffusive current
with the current created by an electric field. A full treatment
of this equation can be found in Appendix 77.
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Figure 2.5.2: Flow of diffusive and ionic current within a
nerve or cardiac cell. Ionic currents flow down a potential gra-
dient along the radial axis of a nerve or muscle cell, and, as
membrane ion channels open, ions can flow down transmem-
brane concentration and potential gradients. Typically Na and
Ca ions flow into the cell while K ions flow out of the cell.

have to add two additional sources of current in this
balance, diffusive current into the node and diffu-
sive current out of the node. The current into the
node is %&W, where R is the internal resis-
tance per unit length (the reciprocal of g, conduc-
tance). It is easy to imagine that throughout the
length of a cell that there would be all sorts of obsta-
cles such as intracellular organs or proteins in the cy-
tosol that would inhibit the free flow of ions through
the cell. Since this hindrance is relatively uniform
for the different types of ions, we only need on term
to account for them. The current out of the node
is W. Because we cannot manufacture
charge, then the difference per unit length must equal

the current through the membrane.

V(—-Az)-V(z) _ V(z)-V(z+Azx)

RAz Az —
Az
A%
CE + gnabna (V — WNa) + g (V — Vi)
+g.(V -W)

Taking the limit as Az goes to zero then we have
the standard nonlinear parabolic partial differential
equation with the driving function composed of the
individual ionic currents.

ov
V2V = 5t ML (2.5.1)
where I]_ = INa; Iz = IK and 13 = IL-

At this point, the two gating variables, bn, and bk,
were defined by words, but there was no formula to
define their value. These gating parameters separate
the H-H model from pure first principles, Ohm’s law
and conservation of charge. This is where Hodgkin
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and Huxley strayed from ordinary science to extraor-
dinary science and this yielded a Nobel prize.

Hodgkin and Huxley’s experiments revealed that
when they switched the potential across the cell mem-
brane from a polarized value (-60 mV) to a depolar-
ized value, 0 mV, and they poisoned the K charge
carriers so that they saw only Na current, the Na cur-
rent decreased transiently and then returned to zero
(or near zero) (the red trace in Figure ??). This fea-
ture probably led them to conjecture that there was
some sort of dynamic gating process that controlled
the flow of ions through the channel. For Na current,
they initially suggested two gates, one for activation
and one for inactivation. Similarly for potassium,
they initially suggested a single activation gate (the
green trace in Figure 77).

To test their model they must have plotted ob-
served and expected currents. From these plots they
would have observed that the first draft of the model
did not fit the initial onset of the activation process
for Na or K. For Na current, three activation gates re-
sulted in a better fit. The result was that they defined
bna = m3h, where m is the probability that an acti-
vation gate opens after the nerve is stimulated, thus
m?3 is the probability that three open, and h is the
probability the inactivation gate slowly closes after
the nerve is stimulated. Similarly for the potassium
current, they found that four gates fit the onset of ac-
tivation better than a single gate and thus, bx = n*.
Substituting terms, our final equation is:

dv
CE + gnam>h(V — Vaa) + gen*(V — Vi)
+gu(V—-W) =0

and the results are shown in Figure ?? where we show
the computed action potential and the three gating
variables.

This curve fitting exercise is a wonderful example
of paying attention to small details. The current volt-
age relationship of a Na channel is usually measured
by holding the cell at some negative (-120 mV) po-
tential and then testing the response with a short
duration (5 ms) shift in potential to a test potential.
The peaks of each response is plotted and then you
think about what the I/V curve is trying to tell you.
Shown in ?? are peak Na currents measured in cul-
tured cardiac cells by Gus Grant (+) as a function
of the test potential and fits to the I/V curve as-
suming one (red) and 3 (blue) activation gates. Note
that for the initial activation between -60 mV and -45
mV, the red (single) curve overestimates the current
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Figure 2.5.3: Comparison of a single and 3 activation gates
for cardiac Na channels. Experimentally observed peak cur-
rents shown as +, single gate as red and 3 gates as blue

Computed Action Potential: Hodgkin Huxley Model
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Figure 2.5.4: Computed squid action potential and gating
variables.

while the blue curve is right on the money. Similarly,
the single activation gate overestimates the peak of
the curve. Such consistent overestimation is typically
not due to noise, but would suggest that something
is missing from the model. In the H-H days of desk-
top calculators, many (probably including me) would
have been happy to get general agreement between
observed currents and model currents as shown by
the red line, but not Hodgkin and Huxley. They must
have realized that there was something not quite right
and redid their analysis for a 3 gate process for the
Na channel and a 4 gate processes for the K channel.

The first hint that the theory developed by H-H
was correct came about 30 years later when the Na

channel was cloned and sequenced by Noma and col-
leagues in Japan. They observed 4 subunits, each
with 6 membrane spanning components and a per-
fect arrangement for a helical gate. 50 years later,
Ray MacKinnon and colleagues managed to crystal-
lize K channels and found four paddles that acted as
voltages sensors for the gating process.

2.6 Model Approximations and
Assumptions

When I run an experiment, I have two types of mod-
els running around in the back of my head. One is a
model of the underlying process that I am studying,
mechanisms of ion channel blockade. This model is a
piece of cake. I make measurements, then fit the mea-
surements to the values predicted by the underlying
physical model of ion channel blockade.

But also an implicit model is running around in the
back of my head. An implicit model that reflect data
manipulations I do in order to salvage results from
an experiment, that for whatever reason, is not sta-
ble. For example, it is well known that in whole cell
voltage clamp studies, the preparation ”runs down”
over the course of the study. By this I mean that
if you do nothing except make a measurement (peak
Na current), every minute for 20 minutes, the results
will show a gradual reduction of peak Na current -
perhaps as much as 10 - 20 percent, sometimes even
larger.

2.6.1 How Normalization Can Change
Your Model

When an experimentalist have rundown in a prepara-
tion, the traditional analysis strategy is to ”normal-
ize” the data - i.e. to make a measurement, apply the
intervention (superfusing the cell with a drug) and di-
vide or subtract (depending on the situation) the first
7 control” result from each of the measurements made
during the intervention. Then the next intervention
would be to wash out the drug by superfusing with a
drug-free solution. If there has been little rundown,
then the peak Na current after washout will be similar
to that before the drug was applied. This, however is
rarely the case.

With normalization, we are imposing a model on
the data. We are assuming that the changes in our
measurements are due only to rundown or the inter-
vention and nothing else. Often this is the case, but
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there are situations where this is not the case.

Consider the study of lidocaine block of cardiac
Na channels. It is well known that the fraction of
blocked channels changes with the transmembrane
potential of the cell. Hyperpolarized cells experience
little block whereas depolarized cells experience sig-
nificant block. Now we study the voltage dependence
of lidocaine block. We make a control measurment,
apply the drug, make measure the fraction of blocked
channels associated with each pulse of a train of de-
polarizing pulses. Then we depolarize the holding po-
tential, and repeat this protocol: control pulse, train
of pulses.

Now, since we know that lidocaine blockade is de-
pendent on the transmembrane potential, (holding
potential), if we divide each current measured dur-
ing the train of pulses by the control pulse, we cor-
rect not only for rundown, but also we abolish the
known voltage dependence of lidocaine blockade. Su-
perposition of an explicit and implicit model occurs
often, simply because the experimenter is unaware
that normalization of data actually carries with it,
an alteration of data that is equivalent to adding a
component to the model. Unfortunately, this hidden
addition to the model goes unnoticed and analyses
can lead to incorrect conclusions due to confound-
ing of effects described by the explicit and implicit
model.

2.6.2 Assuming Pseudo-Steady-State

Also known as Quasi-Steady-State, this assumption
allows you to model a small portion of an extremely
complex system. Simply put, without this assump-
tion many models would not exist and it allows us to
work with a system that has both fast and slow reac-
tions. If you are interested in the portion of the model
that contains the slow, or rate limiting reactions, you
can (sometimes) assume that the fast reactions are in
a state of dynamic equilibrium, and the their deriva-
tives are equal to zero, compared to the slow reac-
tions. If you are interested in the portion of the model
that has fast reactions, you can assme that the the
slow portion does not change significantly (and thus,
it’s deriviatve is zero) when compared to the fast.

Example 2.6.2.1 (Focus On Slow Reactions)

For me, in the drug binding business, the channel
switches from closed to open and then it can be
bound. The binding reaction is slow and the channel
transitions are fast. so C j===; O j===; B Now

dO/dt = k1C + k4B — (k2 + k3)O (1,2 are forward
and revers for C-O and 3,4 and forward and reverse
for O-B. dB/dt = k3O — k4B dC/dt = k20 — k1 C
but this is fast compared with the others so lets as-
sume that it is always in equilibrium: O = k; /k.C
and then using 1 = C + O + B, you know that
1= k2/k10 +O+BO'[‘O = (1 —B)/(l +k2/k1) and
now you can sumstitute into the dB/dt equation for
O and solve for B in terms of everything else. ||

Example 2.6.2.2 (Focus On Fast Reactions)

If we were interested in some intracellular process
that required external stimulation, we can often as-
sume that the internal processes are much faster than
the externeral ones due to the fact that the concen-
trations of the various players in the reactions are
much higher internally. ||

2.7 Examples of Models

2.7.1 Macroscopic/Deterministic
Behavior

Example 2.7.1.1 (Drug-Receptor Model I)

Let’s now look at a few examples of systems that
lead to first order differential equations. Consider
the process of a neurotransmitter binding to a re-
ceptor. Let N be the concentration of the neuro-
transmitter, and R, be the number of occupied re-
ceptors where R.x is the total number of recep-
tors. The number of unoccupied receptors, R,, is
thus Rmax — R,. Thus, the reaction between neuro-
transmitter, unbound receptors and bound receptors
can be encapsulated with the formula,

k
N+ Ry < R,

where k is the proportionality constant for binding
and [ is the proportionality constant for unbinding.
The rate of change of occupied receptors is thus,

dR,
dt

= kNRy—IR, = kN(Rumax—Ro)—1R,. (2.7.1)

If we convert Equation ?7? to represent the change
in the fraction of bound receptors by dividing by
Rumax, and rearrange the terms a little bit, then we
can solve it by using what is called an integration
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factor.® That is, if we let b = RR%, we can rewrite
Equation ?? as

db
— = kN(1—0)—Ib. 2.7.2
” (1-10) (2.7.2)
Rearranging the terms gives us:
db
or
db
— + (kN +1)b=EkN. (2.7.4)

dt

With Equation ?? in the exact same form as Equa-
tion ??, the form required for our general solution,
we can easily solve for b(t). First, we will determine
the integrating factor. That is, from Equations 7?
and 7?

u(t) = exp ( / (kN + l)dt)

— (kN

(2.7.5)

We can now plug the integrating factor, along with
bits from Equation ?? into Equation ?? and solve for
b(t). Thus,

b(t) = e~ (BNHI (kN / eFN+Dt g 4 C)

kN
_ o (kN+I) (EN-+ID)t —(EN+1)t
€ kN + le +Ce

kN 4 Co— (kNI

T kN +1

(2.7.6)

Since we know that at time ¢ = 0 that some fraction
of receptors are occupied, b(0), we can solve for C.

That is,
kN
WO =nt

and simple rearrangement gives us,

kN

C=t0 v
Thus, our general solution for b(t) is

kN
EN +1

KN \ _
+(b(0) - kN+l> e~(EN+OE (9.7.7)

b(t) =

3The specific mechanics of this solving an ordinary differ-
ential equation using an integration factor is fully described in
Section 77.

Example 2.7.1.2 (Phase Plane Analysis)

If we return to Equation ??, we can determine the
asymptotic behavior of the solution without having
to solve for it.* First, we will determine any points
where the system is at equilibrium. That is, deter-
mine where the derivative is zero.

db set

T =0
kN — (kN +1)b=0
N
(kN +1)

Thus, when b(0) = kEN/(kN + 1), for all ¢, we are
at an equilibrium and will not move from it. When
b(0) < kN/(kN +1), then the slope for all ¢ is positive
(to see this, try plugging in b(0) = kN/2(kN + 1)),
and thus, as t — oo, b(t) approaches kN/(kN + 1)
from below. If b(0) > kN/(kN+1), then the slope for
all ¢ will be negative and as t — oo, b(t) approaches
the equilibrium from above.

Note that b = 1/2 when N = [/k. This is called the
equilibrium dissociation constant and is the concen-
tration of drug where the fraction of bound receptors
is 1/2. Thus, from the kinetics of binding and unbind-
ing, you can directly get a feel for the concentration
of drug required to have half the receptors occupied.

2.7.2 Microscopic/Probabilistic
Behavior

Example 2.7.2.1 (Drug-Receptor Model II)

Example ?7? is probably the most useful derivation
in biological models. It is also simple with only a few
assumptions. If we look at the system more closely we
see that binding comes from molecules colliding with
receptors and only every once in a while is the colli-
sion sufficiently strong that an “event” takes place,
producing a complex of “molecule bound to a re-
ceptor.” The collisions are due to thermal motion
and, up to a certain point, the hotter the solution
the more vigorous the collisions and the more bind-
ing events. However, beyond that point, the complex
can also vibrate and fall apart. Thus, at thermal
equilibrium, both binding and unbinding events are
constantly happening. In Example 7?7 we were as-
suming that the probability of a binding event or an

4See Section ?? for a complete overview of the general
method of phase plane analysis.



unbinding event is constant in time. In this exam-
ple we will take into account the microscopic view
of binding and unbinding and demonstrate that this
this is a pretty solid assumption to make.

The probability that a receptor is occupied at time
t is P,(t) and the probability that a receptor is un-
occupied at time t is P,(t). We also know that
P,(t) = 1 — P,(t). The probability that an unoc-
cupied receptor will become occupied depends on the
collision rate which in turn depends on the concen-
tration of hormones, neurotransmitters or whatever
molecule is involved in the reaction. We will denote
the concentration of the molecule as, N. The proba-
bility that an unoccupied site at time ¢ will become
occupied during the next increment of time, A is

Py = ANA, (2.7.8)

where A is the proportionality constant for the bind-
ing rate per molecule of drug.

For a receptor is bound, there are two possibilities
for its state after A. It can either become unoccu-
pied or remain occupied. The probability that an
occupied receptor will become unoccupied during the
time interval, A is a fixed rate,

P,y = pA. (2.7.9)

The probability of an occupied site remaining occu-
pied during A is simply

P yo=1-P,,,=1—puA. (2.7.10)

To determine the probability that a site will be
occupied at time t + A we need to consider two pos-
sibilities. Either the site was empty at time ¢ and
became occupied during A, or the site was occupied
at time ¢ and it did not become unoccupied during
the interval A. Thus,

Po(t + A) = Pu(t)Pu—m + Po(t)Po—m

= P,()OANA + Po(t)(1 — pA)  (2.7.11)

We can now rearrange terms in Equation ?? and

make a difference equation,

P,(t+ A) — P,(t)
A

= ANP,(t) — pPs (1)

= AN(L = Po(t)) — pPo(t)-
(2.7.12)

If we now let A go to zero, we will end up with a dif-
ferential equation for the probability that a receptor
site will become occupied:

P

1—P,) — uP,.
" ( ) — u

(2.7.13)
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If we compare Equation ?? to Equation ?7 we no-
tice a striking similarity. Notice that

where b(t) is the fraction of bound receptors at time
t. Also, both A and u map to the constants used in
Equation ??. Thus, once we take away the assump-
tion that there is a constant event probability over
time, we end up with the same general equation. ||

2.7.3 A Single Cell

Example 2.7.3.1 (Non-Linear and Linear DEs)

Earlier, we briefly explored the role of a cellular ac-
tion potential plays in short term memory. Cells such
as neuronal, cardiac and muscle cells are ezxcitable, i.e.
when stimulated with a subthreshold stimulus, the
cell’s electrical potential remains more or less con-
stant. On the other hand, when the cell is stimulated
with a suprathreshold stimulus, the cell’s electrical
potential will change dramatically, and over time re-
turn to its rest value.

The action potential is a mechanism for cells com-
municating with each other. Cellular communication
happens when a cell releases a packet of neurotrans-
mitter that binds to a receptor on a nearby cell, or
when the cell changes its transmembrane potential
and the change is sensed by an adjoining cell. An
example of the first method is a nerve cell talking to
another nerve cell using synaptic coupling. The lat-
ter method could take place in heart cells that are
electrically coupled by gap junctions.

What is the minimum complexity of a cell capable
of talking (an excitable cell)? In order for it to be
useful in signaling, it must be able to have two stable
equilibria, rest and excited. By equilibria, we mean
points where the derivative, dU/dt, is zero. By sta-
ble, we mean that when you push the solution to ei-
ther side of the equilibrium, the process described by
the ode moves the solution back to the equilibrium.
In order to have two stable states, the derivative of
the current voltage relationship (if we are considering
membrane potential as our means of communication)
must equal zero at three different conditions, two of
these zeros will be stable and one unstable. (See Ex-
amples ??, 7?7 and ?? for illustrations of stable and
unstable equilibria.) Therefore a model, driven by a
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Figure 2.7.1: Cubic nullcline for Equation ??. Here a = 0.25.

cubic equation of the form:

dUg

dt

where we assume 0 < a < 1, is required to meet the

above conditions. Equilibria exist when this deriva-

tive is zero, and thus has equilibria, at U =0, U = a

and U = 1. A graph of f(U), current, is shown in

Figure ?? and is called the nullcline. From this, we

can graphically explore the behavior of any ode. An

equilibrium exists at each point where the nullcline
crosses the dU/dt (current) = 0 axis.

Notice that for U < 0, the nullcline (dU/dt) is pos-
itive and for 0 < U < a, the derivative is negative.
If the solution is sitting at U = 0 and you push it to
the left (say U = —0.9) then the value of f(U) is pos-
itive so that dU/dt > 0 and the solution moves back
to U = 0. Similarly, when you push it to the right
(say U = 0.1), then the value of f(U) is negative so
that dU/dt < 0 and the solution moves to the left,
back to U = 0. Thus, U = 0 is a stable equilibrium.
When a < U < 1, the derivative is again positive and
thus U = a is an unstable equilibrium. Finally, when
U > 1, the derivative is negative making U = 1 a
stable equilibrium.

The switching nature of this model can be readily
demonstrated. Assume that we are resting at U = 0.
Now as you move U to the right, the derivative is < 0
so that if we turn the solution loose, it will migrate
back to the stable equilibrium at U = 0. However, if
we continue to push so that U > a, then now dU/dt >
0 and the solution will continue to the right until it
reaches the point, U = 1. The point, a is called is
called the threshold and with this switch, we have a
mechanism for “talking”, switching from a stable rest
(U = 0) state to a stable excitable (U = 1) state.

= fU)=U@-U)U-1), (2.7.14)
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Figure 2.7.2: Switching with near threshold stimulation, a
=0.25

We can add a stimulus function, S(t) to f(U) that
has magnitude m by simply creating a function that
is equal to S for a given interval of time. That is:

0, t<0
St) =4 m, 0<t<t, (2.7.15)
0, ty<t

where ¢, is the duration of the stimulus. This function
could be a reflection of coupling from other cells. For
example, a neurotransmitter opening an excitatory
channel transiently. Adding S(t) to f(U) gives us:

dUp
dt

fU)+S(@). (2.7.16)
Depending on the size of m, if we initially start at
f(U) = 0, we can switch from the rest state to the
excitable state as shown in 77

Here, the stimulus amplitude is 0.25 and the du-
ration of the stimulus is altered. Starting at the
stable equilibrium at 0,0, the potential increases lin-
early until the stimulus value returns to zero. By
varying the duration of the stimulus, we can achieve
sub-threshold, threshold and suprathreshold values.
Shown are the durations of the stimuli. Note that for
a duration of 1.4, the value of U exceeds the threshold
(0.25), at the end of the stimulus, and thus, rapidly
moves toward the higher stable equilibrium at 1. As
the stimulus duration is reduced, the transition time
to the equilibrium at U = 1 is progressively longer
until the duration is 1.02. Now, the value of U at the
end of the stimulus is no longer suprathreshold and
the potential decays back to the stable equilibrium at
U=0.



Now we must determine how the switch can returr
to a rest state when it is in an excitable state. Phys-
ically, charge is removed from the cell until it crosses
the threshold and then the cell takes over, lowering its
charge until the lower equilibrium has been reached
As a first attempt at modeling this removal of charge
we could define a variable V' such that:

dv
E =aU.

The problem, however, with this definition is that
V' will not continue to grow when U hits the upper
equilibrium point. As a result, the system will never
return to the rest state. Thus, we must add a seconc
term that will allow V' to grow once U is at the equi-
librium point. In this case we will add a term that
causes exponential decay in the charge:

dv

dt

where a < b. From this equation we can see that as
U increases, so does aU and thus, so does V. Once
U plateaus at the higher equilibrium, V' will continue
to increase, at slower and slower rates because bV
will continue to subtract from aU larger and large:
amounts, until aU' < bV. Once bV dominates, Equa:
tion ?? will become negative and V' will decrease.

With Equation ?? for V', our equation defining the
entire cell becomes

dUs

dt

By subtracting V' from f(U) the switch becomes
monostable by removing two of the equilibria. We can
determine the location of the remaining equilibrium
is determined by examining when the derivatives for
both equations are zero.

Since V' only plays a significant role after the ini-
tial stimulation, we can omit S(t) in the following

(2.7.17)

=alU — bV, (2.7.18

F(U) =V + S(t). (2.7.19

derivations. First, we will solve % =0:
dUps set
a0
fU) -V =0
vV =fU).
Now we will solve dV/dt:
dV et
a0
(aU=bV)=0
bV =aU
V =alU/b.
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Figure 2.7.3: Cubic and linear nullcline for the Fitzhugh
Nagumo cell model. When U(t = 0) { 0.25, the potential col-
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Figure 2.7.4: A response to sub-thresholdstimulation at
t = 2. The cell potential, U, collapses after the end of the
stimulation pulse because the phase point did not cross the
threshold (0.25) marking the unstable equilibrium ?? marking
the transition from dU/dt ; 0 to dU/dt ; 0.

The result is the strait line in Figure ?? with a slope
of a/b The intersection gives us a single equilibrium.

In biology, the dynamics of moving from a rest
state to an excitable state is fast because Na channels
open quickly. The recovery, however, is slow because
K channels open slowly. We can incorporate this into
our model by including a scaling factor into Equation
?29.

av
o = claU = V).

(2.7.20)
Keep in mind that € does nothing to alter the equilib-
rium point since it simply divides out when solving
for it.
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Figure 2.7.5: A response to supra-threshold stimulation
t = 2. In this case, the potential, U, exceedes the threshol
crossing into the region where dU/dt ; 0, and thus accelerat
toward the equilibrium at U = 1. The peak of the acti
potential never reaches the point where U = 1, due to t.
cooling effect reflecting the slow parameter, V.

The switch defined by Equation 77, % is bistabie
with stable equilibria at U = 0 and U = 1. What
we would like to do is incorperate a variable that will
remove charge from the cell during the excitable stage
until the threshold is crossed and the cell and reset
itself to the rest state. ||

Now - move the slow function linear nullcline to
the right where the equilibrium is unstable. Now the
FHN system behaves as an oscillator as shown in the
figure. Same exact model - only a shift in the in-
tersection of the two nullclines (f(U) =0, V=U /
Y

The result is spontaneious oscillation, because the

nullclines intersect at a singular point that is unsta-
ble.

2.8 Taylor series and identify-
ing generic properties

Now lets use the Taylor series and an arbitrary or-
dinary differential equation and explore some poten-
tially interesting behavior. First there are two classes
(at least) of model builders. Class one is interested in
building a full model of some process that is as real-
istic as possible. Class two is interested in building a
minimal model, one that captures essential behavior
and upon which, one can add more and more realism
and ask: How does this altered the behavior of the
minimal model?

We start with the simplest ordinary differential
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Figure 2.7.7: Oscillation of the FHN system due to the un-
stable equilibrium



equation:

% =4 = f(u).
and ask the question - what is the behavior of this
equation as we increase the complexity of f(u)? The
Taylor series is a way to methodically add complexity
(by adding successive terms) in order to more realis-
ticly represent a characterization of some unknowr
function, f(u). Starting with the constant term, we
can analyze the properties of the ODE and get some
ideas about how adequately it represents some pro-
cess of interest.

So we start with

(2.8.1

n

Wi

2 (uo)(u—wu0)?+. ..

f(u) = f(uo) + £’ (uo) (u—uo)
The values of f(up) and its derivatives are simply
constants so that the Taylor series is simply a powet
series in (u — ug). So lets rewrite the series as

f(u) = ag+ai(u—up)+az(u—ug)? +az(u—ug)>+. ..

and start our analysis. For convenience, we will set
ug to zero.

The properties of 4’ = ag are not interesting. The
solutions are lines of varying slope, where the slope
is determined by the value of ag.

Including the first two terms makes the solutior
space a bit more interesting;:

du )
— =u =ag+a1u

< (2.8.2)

This has a single equilibrium where u' = 0 and the
equilibrium is located at u = —%;l. Moreover, the

equilibrium is unstable® if a; < 0 as shown in Fig-
ure ??. When there is a disturbance that moves the
phase point, (f(u),u) to the left, then we see that
u' < 0 which pushes the phase point away from the
equilibrium. Similarly when the disturbance moves
the phase point to the right, 4’ > 0 which pushes
the phase point to the right, again away from the
equilibrium.
Now, we add the quadratic term and have

du

! 2
=uU =ag+ a1u+ axu
az 0 1 2

(2.8.3)

We assume that all the constants are such that there
are 2 intersections with the ' = 0 line in the (u',u)

5See Section ?7 for a full explanation of the terms stable
and unstable.
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Figure 2.8.2: Quadratic nullcline for Equation ??. The left
root is unstable, the right root is stable

plane. If there were no intersections, then again, the
behavior is not interesting. So these two intersections
represent 2 equilibria, one stable and one unstable.
See Figure ?7.

Next we add the cubic term and have

du

i u' = ag + a1u + asu® + azu’®

(2.8.4)
Now, in the (u',u) plane, we have constants, a; such
that there are 3 intersections with ' = 0. and de-
pending on the values of the a;, we either have two
stable and one unstable equilibrium or we have two
unstable and one stable equilibrium. Figure ?? dis-
plays the cubic where we have two stable and one
unstable equilibrium.

Now what is interesting about this from a biologi-
cal modeling perspective? Many biological processes
behave like switches. A neuron is either in the rest
state or the excited state. A cardiac cell is either in
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Figure 2.8.3: Cubic nullcline for Equation ??. The left roc
is unstable, the right root is stable

the rest state or the excited state - and translate
to muscle, the muscle is either resting or contractec
We can even look at transcription. Either the gene
being expressed or not.

All of these process have in common, switch-like
behavior. From a modelling perspective, it means
that the minimal complex model for describing a
switch requires a cubic function on the right hand
side of the ODE which means that only nonlinear
systems can represent switching behavior. Also, the
middle, unstable equilibrium, represent a threshold.
So all switches must have a threshold, and we should
be able to design experiments to reveal the threshold.
Now, a distraction. If there is diffusive coupling be-
tween switches and all are initially in the same state,
then as one switch is forced to change states, the
switches to the left and right can potentially be in-
duced to switch (if the diffusive element forces the
local value of u to exceed the switching threshold)
and the result will be a propagating wave.

It is exciting to see the verification of a theoret-
ical argument (above taylor expansion of an arbi-
trary function) in real biological systems. In figure
?? we see the current voltage relationship measured
in an isolated rabbit cardiac atrial cell. Using the
voltage clamp procedure, the potential was gradually
increased from negative to positive and the current
associated with each potential was recorded. The re-
sultant i/v is a quasi-steady state and does not ac-
curately reflect the dynamics of a cardiac (or nerve)
cell. Nevertheless, the cubic nature is clearly seen
(due to calcium channels).

Now the fun part of modeling is to link the cubic
function to some real mechanism. In the case of car-
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Figure 2.8.4: Current voltage relationship obtained from
voltage clamp studies of cultured rabbit cardiac atrial cells.
Note the cubic-like behavior

diac and neuronal cells, the cubic function represent
the instantaneous current-voltage relationship of the
cell. We are unsure what the cubic function repre-
sents in a gene expression system.

2.9 Analytical Methods for
Solving First Order ODEs

The order of a differential equation is determined by
the highest derivative that appears in the equation.
A first order differential equation has only the first
derivative of the function of interest. These equations
take the (general) form:

dy

Y+ Py = Q@), (291)
where P(x) and Q(z) are known functions and y is

an unknown function of z.

2.9.1 Graphical Solutions: Phase
Plane Analysis

Oftentimes we can gather a good deal of qualitative

information about a solution to a differential equa-
tion without going through the trouble of finding an



analytic or numerical solution. Instead, we can sim-
ply look for equilibrium points, or points where the
derivative is zero, and determine whether the func-
tion moves toward or away from these points as time
passes giving us the asymptotic behavior of the func-
tion without having to solve for it.

Example 2.9.1.1 (One Stable Point)

Consider the differential equation:

dy

— =2y —4. 2.9.2

& y (2.9.2)
When y(t) = —-4/2 = -2, dy/dt = 0. Thus, if
y(0) = —2, then for any value of ¢, y(t) = —2, since
the derivative will always be zero. Thus y(t) = —2 is

called an equilibrium since it will not change. How-
ever if y(0) > —2, then the derivative will be negative,
and thus, as t grows larger and larger, y(¢) will con-
verge to —2. This is easily seen by simply plugging
in different values for y that are greater than —2. For
example, if y = 0, then dy/dt = —4. If y = 100,
then dy/dt = —196. Likewise, if y(0) < —2, than the
derivative will be positive for all values of ¢ and y(t)
will approach —2 from below as t goes to infinity.
Since the line y(t) = —2 is approached from above
when y(t) > —2 and below when y(t) < —2, it is
called a node or a stable state. This is because small
perturbations to the system at this point will only
lead back to it. That is, if the system is at y(t) = —2

and some outside force knocks it to y(t) = —1.98
or y(t) = —2.02, it will asymptotically return to
y(t) = —2.

Figure ?? shows an actual plot of the phase lines,
or slopes for various values of ¢ and y(¢). Due to the
fact that there are no free instances of ¢ in Equa-
tion 77, the slopes are the same for each value of t.
In this illustration, it is easy to see the stable point
y(t) = —2 and how the slope of any point above or
below this line points toward it. Figure 7?7 demon-
strates how that regardless of the initial condition, as
t gets larger, the solution will converge on the stable
equilibrium. Figure ?? shows how a nullcline graph
represents the same information. ||

Example 2.9.1.2 (1 Stable and 2 Unstable)

Consider the cubic differential equation:
dy
dt

where dy/dt 0 when y(t) 1, y(t) = 2 and

y(t) = 3. By plugging in different values for y, we can

=W -Dy-2)(y-3), (2.9.3)
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Figure 2.9.1: A Phase Plot for Equation ?7.
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Figure 2.9.2: A Phase plane for Equation ??, with the so-
lutions for the initial conditions, t = 0, y(¢) = 1 and ¢t = 0,

y(t)

grows, they both converge to

it.

= —3. Notice how, regardless of whether or not the initial
condition puts y(t) above or below the stable equilibrium, as ¢
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Figure 2.9.3: A nullcline for Equation ??7. When t < —2, the
derivative is positive. When ¢ = —2, the derivative is zero, and
thus, this is an equilibrium point. For ¢ > —2, the derivative
is negative. Since the derivative is positive on the left and
negative on the right, y(¢) = —2 is a stable equilibrium

determine the slope at different points. In this cas
we end up with one stable point, y(¢) = 2 and tw
unstable points, y(¢t) = 1 and y(t) = 3. By unstabls
we mean that if the system is at y(¢) =1 or 3, and
is perturbed slightly, it will not return to its origin:
state. Instead, it will either move toward y(t) =
or £o0o. This is illustrated in Figure ??7. Figure ?
shows the equivalent phase information contained i
a plot of the nullcline. When the initial conditior
are known, specific solutions can be plotted and th:
is shown in Figure ??. ||

Example 2.9.1.3 (2 Stable and 1 Unstable)

Consider the cubic differential equation:

d
T =-Du-26-y), (2.9
where dy/dt = 0 when y(¢t) = 1, y(t) = 2 an

y(t) = —3. Again, by plugging in different value

for y, we can determine the slope at different points.
In this case, we end up with two stable points and
one unstable point. This is illustrated in Figure ?7.
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Figure 2.9.4: A Phase plane for Equation ??, equilibria at
y(t) = 1, y(t) = 2 and y(t) = 3. The equilibrium at y(t) =
2 is stable since the slopes immediately above and below it
converge to it.

— Derivative>0
— Derivative<0

dy/dt

yi)

Figure 2.9.5: A nullcline for Equation ??. There is one
stable equilibrium at ¢ = 2, where the derivative to the left is
positive and the derivative on the right is negative. The other
two equilibria are unstable.
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Figure 2.9.6: A Phase plane for Equation ??, with solu-
tions with the initial conditions set to y(0) = 3.1, y(0) = 3,
y(0) = 2.5, y(0) = 1.5 and y(0) = 0.9. Notice how even though
y(t) = 3 is an unstable equilibrium, and thus, solutions will not
converge on it, if that is where your solution begins, it will not
deviate from it without some other force acting on it.
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Figure 2.9.7: A Phase Plane for Equation 77.
two stable equilibria at y = 1 and y = 3 and an unstable

equilibrium at y = 2.

1
t

There are

2.9.2 Separation of Variables

How do we solve Equation ??? That is, how do we de-
termine what Equation ?? is the derivative of? First,
we note that we can separate the two variables, y and
t, by multiplication. That is,

dy

= —bdt.

Integrating both sides produces

In(y) =

where K is the combination of the two integration
constants. Using each side as an exponent, we have

—bt + K, (2.9.5)

eln(y) _ e—bt+K

y=e Kbt

=Ce™",
where C = K.

This method can be used to solve both linear as
well as nonlinear ordinary differential equations. Ex-
ample ?? gives an example of a solution to a quadratic
nonlinear ODE and Appendix ?? shows how to use

separation of variables to solve a cubic nonlinear
ODE.

Example 2.9.2.1 (Quadratic ODE)

We will begin with a quadratic ODE that is often
used to model population growth (birth and immi-
gration) and decay (death and emigration).

dy

o (2.9.6)

=y(k—y)

Equation ?? can be solved using the method of
seperation of variables. We begin by separating y
from ¢ by multiplcation. That is,

dy _
i y(k —y)
dy
——7 =t
y(k—y)

dy

/m:/dt

The integral on the right-hand side can be easily
solved once it is broken down into simpler compo-
nents. This can be done using the method of partial

(2.9.7)
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fraction decomposition. That is,

1 _A B
ylk—y) y k-—y
1 - Ayk—y)  Bylk—y)

Yy k—y
1=A(k—-y)+ By
1=Ak+y(B - A)

and A = 1 and B = i, thus,
1 1 1
e R
ylk—y) ky k(k—vy)
1 1/1 1
S - 2.9.8
y(k—y) k(y k—y) (298)
(2.9.9)

Substituting Equation ?? for the fraction in on the
left side of Equation ?? gives us the following;:

1 1 1
z/(fm)dy—”c
1
E(loegI—loglk—yI)=t+c
ly| )
lo =kt+C
g(m—m
ly| — ktHC — gkt O — okt
|k —yl
|k - y| — Ce—kt
|yl
k_ 1=Cek
y
ﬁz 14+ Cekt
Y
B k
y= 1+C€7kt

2.9.3 Integrating Factors

Using integrating factors is a useful trick to use when
you can not separate the different variables or, if you
are able to separate the variables, the integration is
too difficult. Here we will present an example of how
integrating factors are used and then give a general
formula for this method.

The simplest ODEs are linear with constant coef-
ficients:

dy _

i f(y,t) = —ay—> (2.9.10)

where a is a constant. You may have guessed that this
is similar to Equation 7?7, with a similar solution, the
exponential function (Equation ??). The only differ-
ence here is that there is an added constant. Thus,
just as you would expect, the solution is exponential
plus a constant. Solving this equation, however, uses
a trick, an integrating factor, and in this case the
integrating factor is e**. The main idea is to multi-
ply the equation by a well chosen integrating factor
that makes the integration simple. The task of choos-
ing a good integrating factor can be boiled down to
following a standard formula, so, overall, finding the
solution is not too hard. Thus, starting from Equa-
tion ??, we can move everything to one side,

dy

dt
and multiply through by e%:

+ay+b=0 (2.9.11)

at @

dt
We can now integrate both sides of the equation and
get:

d
e + aye™ + be*t = &[ye“t] + be® = 0.

b
ye + ae“t +K=0

where K is an arbitrary integration constant that is
determined by the initial conditions.
To finally solve the equation we multiply through

—at

by e~ % giving us:
b —at
y+—-—+Ke =0,
a
or )
y=—Ke * — e (2.9.12)
To solve for K, we let t = 0 and thus,
b
0)=-K - -
y(0) 2
or
K=+
=Y Py
an the complete solution is written as
b b
= —(y(0) + =)e ™ — —. 2.9.13
y =)+ e -2 (29.13)

To verify our solution is correct we can take the
derivative of Equation ??, plug it into Equation ?7?
and make sure that everything cancels out. That is,

dy b, _,
3~ W)+ —)e™
= (ay(0) + b)e™" (2.9.14)

26



and from Equation 7?

dy
ayz—a—

—(ay(0) + b)e™* —b.

(2.9.15)

Plugging the results of Equations ?? and ?7 into
Equation ??, we have

dy

I +ay+b
= (ay(0) + b)e ¥ — (ay(0) —b)e ** —b+b
= 0’

which is exactly what it should reduce to.
In general, given the equation

dy

dz

the solution for y(z) can be found with the formula

+ P(z)y = Q(=), (2.9.16)

y(@) = [u(z)] " (/ u(m)@(w)dmw), (2.9.17)

where p(z) is the integrating factor and

() = exp ( / P(w)dm) .

Example 2.9.3.1

(2.9.18)

In Example ?? we created the ODE:
dA
dt

which can easily be solved using this method. Fol-

lowing our recipe, we have:

= (Pmax — A) — kA,

dA
—+A — 1 Ppax =
w I+k)—1 0
i dA A(+ k)Rt _ g R — g
dt max

%Ae(l"‘k)t — | Ppaxe™0t = 0,

and after integrating both sides with respect to ¢, we
have:

! Prmax

Akt _ tmax (k) | e
e 0+ k)e + 0
[Ppa
_ommax | peo—(Hk)E
U+k + Ke 0
— (llp_x:i;:) _Kef(l-l-k)t‘
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We can now solve for K by setting ¢t = 0:

1P
(I +k)
1P

I+ k)

making our general solution:

A(0)

A(0),

[Pmax [ !Pmax -
AOD =758 " larw ‘A(O)] e,
or
_ Pma.x _ [ Pmax _ 7(1 k)t
A(t)_(1+%) 0t A(0)| e~ R,
I
2.10 Analytical Methods for

Solving Second Order

ODEs

Second order differential equations involve a second
dirvative of the function of interest. These equations
take the (general) form:
d2
T3 + Q@) + Ra)y = G),
where P(z), Q(X) and G(z) are all known continuous
functions and y is a function of z. If G(z) = 0, then
Equation ?7? is called homogeneous. If G(x) # 0, then
it is called nonhomogeneous.

Generally, solutions to second order ODEs are hard
to come by unless P(z), Q(x) and R(z) are all con-
stant functions.

d

P(z) — + Q(x)

2.10.1 Homogeneous ODEs with Con-
stant Coefficients

A homogeneous differential equation with constant
coeflicients has the form:
d’y | . dy
~ 9 1 p2
dz? + dz
where a, b and ¢ are constants and a # 0. Solutions
for Equation ?? can be found by first solving for r in
the equation

a +cy=0, (2.10.1)

ar? +br+c=0. (2.10.2)

Equation ?? is called the charateristic equation or
auziliary equation and it is obtained from Equation



?? by replacing y" with 72, y' with » and y by 1.
Solutions for r can be found using the quadradic for-
mula:

— —b+ Vb2 — dac

te 2a

; —b — vVb? — dac

g = —F—.
2a

Solutions for Equation ?? can then be created from
the solutions for r. Depending on the particular so-
lutions for r, there are three possible forms for the
solution to Equation ?7:

1. If r; # ro and both are real valued solutions,
that is to say, b2 — 4ac > 0, then

y = clenw + Czerzz‘

2. If r; = 7y, because b2 — 4ac = 0, then

T | coxe™?.

Yy = cre
3. If r; = a+iB and r2 = a—if, because b> —4ac <
0, then

y = €% (¢1 sin(Bz) + c2 cos(Bz)) -

2.10.2 Nonhomogeneous ODEs with
Constant Coefficients

A nonhomogeneous differential equation with con-
stant coefficients has the form:
d’ d
as? +pSY 4 cy = G(x),

2.10.
dz? dz (2.103)

where a, b and ¢ are constant coefficients and G(z) is
a continuous function.

To solve equations with this form there are two
primary methods. The first one is called The Method
of Undetermined Coefficients and the second is called
The Method of Variation of Parameters. Because the
first method is conceptually quite simple (although
it does have a few oddities that you need too look
out for) and can be extended to include matrix solu-
tion methods, discussed in Section ?7, it will be the
method we use here.® Also worth noting is that the
explanations given here a geared toward solving spe-
cific problems and for a thoroughly general exposition
on these topics the reader is encouraged to turn to [?]
and [?].

6Variation of Parameters also extends nicely to include ma-
trix solution methods.
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Regardless of which method you use, it is impor-
tant to know that a general solution to a nonhomo-
geneous differential equation has the form:

y(x) = ye(z) + yp(2),

where y.(z) and y,(z) are linearly independent y.(x)
is the general solution to the related homogenous
equation ,
d d
ad—x:g + b% +cy=0,

and is called the complementary equation. y.(x) can
be derived using the method given in Section ?77.
yp(z) is the particular solution to Equation ?? and
can be derived using Undetermined Coefficients or
Variation of Parameters.

The method of undetermined coeflicients simply
sets yp(x) to a general polynomial of the same de-
gree as G(z) and then this is subsituted into the dif-
ferential equation to solve for the coefficients. That
is to say, if G(z) = z?, then we start with y,(z) =
Az? + Bz + C. If G(z) = €%, then y,(z) = Ae’?,
and if G(z) = sinz, then y,(z) = Acosz + Bsinz.
The only significant catch is when G(z) has the same
form as y.(z). The effect of this would make y.(x)
and y, () linearly dependent. In this case, we simply
multiply y,(z) by z, or 2%, whicherver makes y,(z)
linearly independent from y.(z).

Example 2.10.2.1

To find a solution to the equation:

P’y d
—y+—y—2y=sin3:,

ot (2.10.4)

we first find a solution to the complementary equation

We do this by writing out the characteristic equation
r24+r—2=0

which has roots r;1 = 1 and ro = —2. By using the
rules found in Section ?? we know that the general
solution to the complementary equation is

ye() = c1€® + coe ™%,
To determine y,(x), we start with

yp(z) = Acosz + Bsinz.



Differentiating gives us:
y,(x) = —Asinz + Bcosz
Yy () = —Acosz — Bsinz.

We now substitute these equations into Equation 7?
and attempt to solve for the coefficients. Thus,

(—Acosz — Bsinz) + (—Asinz + Bcosz)
—2(Acosz + Bsinz) =sinz
which reduces to
(=3A+ B)cosz + (—A — 3B) sinz = sinx.

We can now solve for A and B with the following
equations:

-3A+B=0

~A-3B=1.

Thus, A= —2 and B = —3 and

1
10 cosT — 0 sin x.

Combining y.(z) and y,(z) gives us a general solu-
tion to Equation ?7:

Yp(z) =

1 3 .
2% _ __ cosx — — sinz.

y(z) = c1€” + cae” 10 10

I
Example 2.10.2.2

To find a solution to the equation:

2
Y .
— =sginz 2.10.5
a2 TV ( )
we start by finding a general solution to the comple-

mentary equation

d2y

dz?

which has the characteristic equation

+y =0,

P 4+1=0
and roots r; = ¢ and ro = —i. Thus,
ye(x) = c1cosz + eosine
To determine y,(x), we first use the equation

yp(z) = Acosz + Bsinz,
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but this has the same form as y.(z), and thus, we
must multiply it by z. Thus,

yp(x) = Az cosz + Brsinz,
and

yp(z) = Acosx — Axsinz + Bsinz + Brcosz
Yy, (x) = —Asinz — Asinz — Az cosx
+ Bcosz + Bcecosx — Brsinx

—2Asinz — Az cosx + 2B cosz — Bxsinx.

Substitution into Equation ?? gives us
—2Asinz + 2B cosx = sinx

which results in the following system of equations:
—2A+4+0B=10A+2B =0,

thus, A = —% and B =0, and
1
yp(x) = —5TCos T

Combining y.(z) and y,(z) give us the following
general solution to Equation ?7?:

) 1
y(z) = cpcosz + casinz — JTcos .

2.10.3 Using Matrix Algebra

Differential equations can be solved using matrix al-
gebra. The advantages to this method are that sec-
ond, third, fourth and even higher order differential
equations can be all solved as first order differential
equations and that when forced to find a numerical
solution (as opposed to the analytic solutions), most
computer tools expect the input to be in matrix for-
mat.

2.11 Numerical Approxima-

tions to ODEs

Finding an analytical soltion to a differential equation
is not always a practical option. Numerical approx-
imations lead to solutions that are much more read-
ily available, however, there are a number of issues
related to the approximation that should be under-
stood. The trick to constructing a viable numerical



solution of a differential is identifying a reliable ap-
proximation of the derivative and then selecting a
step size that results in both a stable and physically
meaningful solution.

THE MAIN IDEA - Crafting approxima-
tions:

Numerically solving a differential equation re-
quires an initial condition (the point where the so-
lution starts) and an algorithm for extending the
solution. Extending the solution can be visualized
as an exercise with the Taylor series. The idea
is to expand the solution space around the initial
condition, and use the Taylor series to guide the
approximation of the solution.

Errors acquired during the construction of a nu-
merical solution arise from two sources: roundoff
and truncation. Roundoff error arises from the lim-
ited precision of computer arithmetic. The problem
is compounded in that the binary representation of
many fractions is irrational, enhancing the effects of
the roundoff error. For example, 1/10 is irrational in
the binary system whereas 1/8 is rational. For this
reason, we often choose discretization intervals that
are powers of 1/2 instead of powers of 1/10.

The second source of error is called truncation er-
ror. This error arises when we make discrete approx-
imations of continuous functions. This error can be,
to a certain extent, limited by making the step-sizes
in the discrete function as small as possible. The
Taylor series, which provided a means for creating
approximate functions, also allows us to evaluate the
truncation error. We often evaluate the quality of a
numerical solution by estimating the error incurred
with our functional approximations.

Example 2.11.0.1 (Forward Euler Method)

We start with a simple first order initial value prob-
lem (IVP)

d
d—g; = f(y,t), and y(to) = yo

(2.11.1)
where {(y,t) is some linear or non-linear function of y
and t and y(to) is the initial value of y at time tq.

Finding approximate values for points other than %
is simply a matter of figuring out what step size, h, of
the independent variable, ¢ to use. Figure ?? shows
the idea of extending the solution using a forward
Euler solution.

The strategy is to start at a point and extend the
solution with a step size, h. So we start at (yo, o),
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Tangent of f(y,t)
at (yo,t0)

Increment in the solution
h* f(y0,t0)

Starting Point
(y0,t0)

Step Sizeh

Figure 2.11.1: The general idea for extending a solution
using a forward Euler method.

compute the amount of y we must add, f(yo,t0) * h
and then use this point to repeat the algorithm:

1. tz'+1 = tz+h

2. Yiy1 = yi+hx f(yi, ts)

This is called the Forward Euler method because
the right hand side, f(y,t) is evaluated at the initial
point. Now, is this a good method? We’ll now look at
a Taylor expansion of our method, and estimate the
error and the stability of the solution. By stability
we mean will the numeric solution reflect the analytic
solution for arbitrary conditions (like step size and
nature of the function, f(y,t)).

Now, using the Taylor series, Equation ??, we will
expand y(t) around y(¢;) and assess the truncation
error:

U(tign) = y(t) +hy' (1) + oy (1) + O(KY). (2112

The three left terms represent the truncated Taylor
series (Euler’s Method) while the right two terms rep-
resent the local truncation error. We are assuming
that h < 1 and thus, the O(h®) term indicates that
all terms that follow in the series will be less than h3.
We see that the method is accurate to order h, and
not the higher order terms (h? or h?), so we say that
its first order accurate.

In order to detrmine how stable this method is for
approximating an ordinary differential equation, we
simply try to detrmine whether or not it will converge
or diverge for large values of i. For example, we will
use a simple function: f(y,t) = Ay so that
=Y = )y, and y(0) = .

Using this to replace the function, f(y,t), in Equation
77, we have

f(y,t)

Yir1 = Yi + hAy; = (1 + hA)y;.



Now, if you start at the initial value, yo, and re-
peatedly apply the above equation, you’ll find that

y1 = (1+ hA)yo

Yir1 = (14 hX) Ty,

We call the multiplier, 1+ h\ the amplification factor.
Clearly if hA > 0 then the solution will blow up after
a few steps. Thus, the solution is only stable when
A < 0, since the step size, h, can never be negative
itself. ||

Example 2.11.0.2 (Backward Euler Method)

The Forward Euler method approximates the points
Yi+1 by starting from some initial point, yo and mov-
ing to the right using the derivatave as calculated at
y;. An alternative to this is to start from yo and move
to the right using the derivative as calculated at y;41.
That is, we evaluate the function, f(y,t) at yi+1, tit1-
To do to this, we rewrite the second formula in the
numerical approximation as

Yir1 = Yi + bf (Yir1, tiv1)- (2.11.3)
Now we let f(y,t) = Ay and solve for y;;; and find
that

Yir1 = Yi + hAyiqa,
and thus,
1

i = (125 0

Starting at the initial condition, yg, %9 we see that

A
Y= <l—h)\> Yo
(1 1
v2 = (1—h/\> (1—h)\)y0
1 i
Yir1 = (m) Yo,

and the amplification factor is now < 1 for all values
of A < 0 (again, since the step size, h, can never be
negative). Thus, this method only provides a stable
solution when A\ < 0. This method is referred to as
an implicit method, since the function is evaluated
at a solution point, yet to be determined. For all
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linear functions, f, a nice iterative equation can be
determined. When f is non-linear, then typically the
function is linearized (with a Taylor series, of course)
and each step in the solution is interated until the
fuction is well approximated by the Taylor approxi-
mation. ||

Example 2.11.0.3 (Leap Frog Method)

The error associated with the simple Fuler method
can be improved by realizing that for both the for-
ward (explicit) and backward (implicit) Euler meth-
ods, there is an asymmetry between approximating
the derivative and evaluating the function. For the
explicit method, the function (right hand side) is eval-
uated at the left side of the derivative while for the
implicit method, f(y,t) is evaluated at the right side
of the derivative. The price for this approximation is
that we now need to know two values of y y; and y; 1
before we can extend the solution to the next point.
We can also evaluate f(y,t) at the midpoint of the
derivative, and this is called the Leap Frog Method.

dy _ Yit1 — Y1
dt 2h
so that
Yirr — Yi-1 = 2hf(yi, ;)

As before, we can evaluate the accuracy of this
strategey by comparing to the Taylor expansion of
the function. We first make a Taylor approximation
for both Yi+1 and Yi-1:

2

y(tivr) = y(t:) + hy' (t:) + h

s () + O(°),

and

W(tinn) = (1) — by ) + (1) — O()

Now, subtracting the two series, we see that the the
2nd order terms cancel. Thus, this method is 2nd
order accurate. ||

Example 2.11.0.4 (Runge-Kutta Method)

The solution accuracy can be further improved by
building a strategy around the leap-frog method and
the forward Euler method. This mixture results in a
Runge-Kutta method that has even more accuracy.
The half step is computed with the forward Euler
method and then the full step is computed with the
leap-frog method.



h .
Yiy1/2 = Yi+ if(y,-,t,-) (2.11.4) > more fhn_trigger.m

Yi+1 = Yi + hf(yi+1/27ti+1/2) + 0(h3) (2115) t = 1inspace(0,50,400) H

Like the leap frog method, this method is 2nd or-
der accurate. The Runge-Kutta method applies to a
class of methods where intermediate steps are taken.
For example, we can make 4 evaluations and make a
procedure that is 4th order accurate:

%x0 = [0.0; 0.0];
x0 = [0.0];

y = lsode("trigger",x0,t);

k1 = f(yi, ts) (2.11.6) plot(t,y);
ko = f(yi + ﬁ,tﬁ ﬁ) (2.11.7) z = [t yl;
2 2 save -ascii plot.dat z;
k h
ks =f(yz'+72;tz'+§) (2.11.8)
ks = fyi+ ks, ti +h 2.11.9
! . f(i k?’ ) ) 2119 912 Markov and
Yit1 = f(yi,ti)+€1+?2+?3+€+0(h5) (2.11.10) Models

This procedure is a very popular procedure, and will
usually do you right. It is safe, accurate, and except
for really wierd models, will provide reliable solutions.
I

Fortunately, octave (matlab) has some very nice
tools for solving odes for us. Here are two little scripts
just to indicate what is needed. The first segment
defines the ode as a function, in this case du/dt =
u(1-u)(u-a) + stim where stim is the stimulation that
forces the system to switch from one stable state to
another:

> more trigger.m
function xdot=trigger(x,t)
% Trigger threshold for stim = 0.25 is 1.039 time units

xdot = zeros(1,1);

a = 0.25;

stim = 0;

if t < 1.039
stim = 0.25;

end

xdot (1) = x(1)*(1.0-x(1))*(x(1)-a) + stim;

endfunction

To to actually solve the ode, we execute the follow-
ing piece of code within matlab which calls the ode
solver: lsode and then plots the results
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Chapter 3

How to ask questions about a model

3.1 Numerical Experiments

One of the easiest ways to explore a model is to si
ply make numerical experiments. These experime
can be as simple as plotting the model response
a function of the independent variable(s). Over 1
years we have accumulated a toolbox filled witl
number of useful command-line tools for perform:
these experiments. The toolbox is available as a
file (analyze.tgz) for use on any system with a C co
piler.

A simple example of these tools in action is is

shell> series 0 10 .1 | \
> tf x1 2.5*%exp(-3.5%x1) | xmgrace -pipe

The first part of the pipe generates the independent
variable values, the second component transforms the
independent variable into the model function, in this
case, an exponential. The third component plots the
data using grace (or the graphing program of your
choice).

If the model is not an algebraic model, but rather
described by the solution to an ordinary or partial
differential equation, then often a simple Euler in-
tegration and its graph is adequate to give a general
idea of what the model is doing. The Section ?? gives
an overview of this and other numerical methods.

The bottom line is always to plot the results, never
simply look at a list of numbers. It is surprising what
a graphical representation will reveal that numbers
hide.
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Figure 3.2.1: A histogram of exam scores
3.2 Formal Questions of a

model and data: Statistical
Hypothesis Testing

3.2.1 Probability Distributions

Imagine a class with 100 students and at the end
of the semester they all took the final exam. After
the teacher graded the exam he noticed that a lot
of students scored between 70 and 75 percent. A
slightly smaller group of students must have studied
a little harder as they got between 75 and 90 percent,
and a similar sized group probably spent more time
at the local pub because they scored between 55 and
70 percent. Even rarer were the groups that aced or
totally bombed the test.

If the teacher wanted to visualize how the grades
on his final exam were distributed, he could draw
out a histogram (see Figure ??)that would show the
number of exams with scores that fell into different
ranges. If he then scaled each column in the his-



togram by dividing by the total number of exams (in
this case, 100), the histogram would also give the
teacher a rough estimate of the probability of picki
an exam at random with a score between 70 and '
If the teacher wanted to know what the probabil
the exam score would be between 70 and 90, he cot
simply add the columns that represented that rar
together to give himself a general idea.

If the teacher fit a curve to the scaled version of t
histogram, so that the total area under the curve w
equal to 1, he could use integration to estimate t
probability of an exam having a score between a
two points. The smaller the area between two poin
the lower the probability that an exam will have tk
score. The larger the area between two points, t
greater the probability of randomly selecting an ex:
in that range. These probabilities are confirmed
the original histogram.

At this point, you may be wondering why t__.
teacher would want to use a fitted curve instead of his
original histogram to determine probabilities. The
reason for this is that it is easier to compare curves,
and thus, use them to answer questions. If the teacher
fit curves to several year’s worth of histograms, he
could use them to determine if having the study ses-
sion two days before the exam helped or not.

3.2.2 Comparing Two Samples: Clar
sifying Variance

Imagine that the teacher mentioned in the previor
section was indeed attempting to determine if tl
study session he held two days before the exam helpe
or not. One potential pitfall in simply visually cor
paring to graphs would be that an improvement
scores could be due to several factors, not just to tl
study session. For example, this year’s class, as
whole, could have been luckier in the multiple choi
section than the previous year’s. Is there any way
characterize how lucky a class would need to be in ¢
der to perform much better? If there was (and the
is), then perhaps the teacher could interpret the fa
that the class would have to be amazingly lucky -
perform as well as is did as not just luck, but due
his study session. In a sense, the fundamental idea ...
statistics is to try to determine if change is a result
of chance or due to a specific reason. In order to do
this, we must consider variability (see Figures 77, 7?7
and ?7).

The variance of a model, notated with o2, quan-
tifies how spread out the data is. In Figures ??, 7?

0.4

02

Figure 3.2.2: Two normal pdfs. One with mean = 0, or
u = 0, and the other with ;4 = 4. Both have the same variance,
0?2 = 1. Notice that with a small amount of variance, the two
graphs hardly overlap and it is easy to distinguish how one is
fundamentally different from the other.
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Figure 3.2.3: Two normal pdfs. One with g = 0 and the
other with y = 4. Both have the same variance, 02 = 2. Notice
how with the increased variance, the two curves overlap each
other more than in Figure 7?.
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Figure 3.2.4: Two normal pdfs. One with 4 = 0 and the
other with u = 4. Both have the same variance, 02 = 4.
Compare the variance and the overlap with Figures 77 and
?7. The more overlap there is, the harder it is to determine if
they are fundamentally different.

and ?? we can see how larger values for o2 result in
shorter peaks and a broader distribution of the data.
If we can determine the variance for a model (usu-
ally it is estimated from the data), then we can use
this information to help calculate the significance of
the difference between two samples. Typically, this is
done by calculating difference between the two sam-
ple means and dividing by the square root of the vari-
ation. That is,

fia — iB
W; (3-2-1)

where [i4 is the mean of the A data set, fip is the
mean of the B data set and s? is an estimate of
the variation in the distributions that the data came
from, o2. We will talk more about how to calculate
s2 shortly.

If you think about it briefly, you will see that the
smaller the variation, the more significant the differ-
ence will be. Another way to think about it is that,
for data sets with large amounts of variation, the dif-
ference between the two means must be greater in
order to avoid being in the area of overlap between
the two distributions (Figure 7?).

Example 3.2.2.1 (The Study Session)

For example, if the average exam score for the year
without the study session was 75%, thus, 14 = 75
and the and for the year with the study session ip =
79, then the difference the two years is, 14 — fip = 4.
If the estimated variation in the distributions that the
data came from is s2 = 1, then we will have distri-
butions like that seen in Figure ?? and the difference

between the two means would be quite clear. How-
ever, if 02 = 4, then the difference would be scaled
by Equation ?? to be only 2, and not as significant.
I

Calculating s%, an estimate of o2 is quite simple.
We simply average the squared differences between
each observation and the mean. That is,

§2 = w (3.2.2)

The reason we square each difference is that we do
not want positive deviations from the mean negating
negative deviations.

To summarize the process of statistical analysis,
here is a list of general steps:

1. Take a bunch of measurements.

2. Make a histogram of the measurements. From
this we can take a guess at the type of distri-
bution that the data came from. In this case,
the histogram looked fairly symmetrical with a
single hump in the middle and this shape is of-
ten modeled with a normal distribution. Other
shapes are better modeled with other distribu-
tions (see Figure ?7).

3. Estimate means and variances from the data and
use them to compare different distributions.

3.3 What Statistical Power
Means

Power is a term that is used quite frequently to de-
scribe statistical tests. As is often the case, the word
has a rather specific definition which we will attempt
to describe here. Due to their close relation to the
definition of power, we will also briefly describe the
various types of errors that statistical tests can make.
Thus,

a = the probability you will reject Hy when it is
true. This type of error is called Type I Error.

B = the probability you will accept Hy when it
false. This type of error is called Type II Error.

Power = 1— 3, the probability the test will reject
Hy when it is false. Thus, the more power, the
higher probability of correctly rejecting Hy.
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Figure 3.3.1: The predicted distribution of X given by
null hypothesis, Ho : u < 0, is depicted in the top graph. The
bottom graph shows the true distribution of X, since u = 1.
With the current sample size, the variation in X, our estimator
for u, is great enough to make it more than likely that we well
fail to reject Ho even though it is false.

You can increase power by increasing the sample
size, n, for the test. This is because the larger sam-
ple size will decrease the variance of the estimated
parameters. For example, consider X as an estimate
of u. By the central limit theorem, the variance of
X, where EX =y and Var(X) = o? for independent
and identically distributed samples from any distri-
bution, is approximately o2 /n, which gets smaller as
n gets larger.

An example of this is shown in Figures ?? and ?7.

3.3.1 Numerical Approximations of
Power

There are two ways to determine the power of a sta-
tistical test, analytical and numerical (that is, exper-
imentally) and quite often, the numerical method is a
more practical approach. To determine the power of
a test given a sample size n, you need only to follow
these steps:

1. Generate n simulated data points (see Section
?? for details on how this can be accomplished).

2. Apply your test to the data.

3. Determine if your test correctly rejected the null
hypothesis.

4. Return to Step ?? and repeat many, many times.

5. The power of your test is:

# of times H, was correctly rejected
Total # of tests

Power =

Figure 3.3.2: The predicted distribution of X given by the
hull hypothesis, Ho : © < 0, is shown in the top graph. The
bottom graph depicts the true distribution of X, since p =
1. However, compared with Figure 77, the sample size has
been increased enough to reduce the variation in the parameter
estimate by one half. This makes it more likely that our test
will reject Hp, and thus, the test has more power.

What a 95% Confidence In-
terval Is

3.4

The concept of a 95% Confidence Interval (95% CI)
is one that is somewhat elusive. This is primarily due
to the fact that many students of statistics are sim-
ply required to memorize its definition without fully
understanding its implications. Here we will try to
cover both the definition as well as what the defini-
tion actually implies.

The definition that students are required to mem-
orize is:

If the procedure for computing a 95% con-
fidence interval is used over and over, 95%
of the time the interval will contain the true
parameter value.

Students are then told that this definition does not
mean that an interval has a 95% chance of containing
the true parameter value. The reason that this is
true, is because a 95% confidence interval will either
contain the true parameter value of interest or it will
not (thus, the probability of containing the true value
is either 1 or 0). However, you have a 95% chance of
creating one that does. In other words, this is similar
to saying, "you have a 50% of getting a heads in a
coin toss, however, once you toss the coin, you either
have a head or a tail”. Thus, you have a 95% chance
of creating a 95% CI for a parameter that contains
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the true value. However, once you’ve done it, your

CI either covers the parameter or it doesn’t.

3.5 P-Values

In publications, you will often times see p-valu¢
ported as the result of some statistical test. A p-
is the probability of an event (or series of events)
ing place that would create a statistic with a
extreme value! than the one you derived, assu
your model under the null hypothesis is correct

Regardless of the type of model you are as
ing describes the source of the data under the
hypothesis, you can create what are called one-
tests. With these tests, there are two typical hyp
ses that people make about the mean of the unc
ing model. One type of hypothesis is that the 1
is less than some value. For example, you might
pose that the mean is less than zero, or Hy : p

Alternatively, the hypothesis might be that the mean

is greater than zero, or Hy : pu > 0.
For the first type of one-sided hypothesis, the p-
value is defined as:

p-value = Pr(z > your statistic)

o
-/ f(@)da,
your statistic

where f(x) is the probability distribution you a
suming the data came from, and your statistic is
value derived from a function of the data (for e
ple, the mean of the data). This is illustrated in
ure ?7?. Since our hypothesis is Hy : 4 < 0, thel
the mean of the data is (and thus, the smalle
p-value), the more likely we will reject the prog
model.

The second type of one-sided hypothesis, whe
are testing to see if the mean is greater than
value, is very similar. The only difference is th:
integrate in the other direction. That is:

p-value = Pr(z < your statistic)

your statistic
= / f(z)dz.

o0

This is illustrated in Figure ?7.

If the type of model you are assuming describes
the source of the data is symmetric (like the distri-
butions in Figures ?? and ??) you can create what

IThat is, a greater value, or lesser value, or both, depending
on the model and the type of hypothesis you are testing. The
details of this will be explained in the next few paragraphs.
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Figure 3.5.1: The p-value for a one-sided statistic where we
are testing Ho : p < 0.
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Figure 3.5.2: The p-value for a one-sided statistic where we
are testing Ho : pp > 0.
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Figure 3.5.3: The p-value for a two-sided statistic where we
are testing Ho : u = 0.

are called two-sided tests. In this case your typical
null hypothesis is that that the mean is equal to a
certain value. For example, you might propose the
hypothesis Hy : 4 = 0. Thus, if the mean of your
data is much larger or much smaller than zero, then
you have good reason to reject Hp. In this case, the
p-value is defined as:

p-value = Pr(z > |your statistic|)
+ Pr(z < —|your statistic|)
=2 X Pr(z > |your statistic|)

oo
=2 / f(z)dz.
|your statistic|

This is illustrated in Figure ?7.

Obviously, the smaller the p-value, the less likely
an event as rare or rarer will take place. Often times
the model proposed by the null hypothesis, Hy, is
rejected if the p-value is less than 0.05. That is to
say, it is assumed that the proposed model does not
explain the data if the p-value is less than 0.05.

3.6 Degrees of Freedom

Estimates of parameters can be based upon different
amounts of information. The number of independent
pieces of information that go into the estimate of a
parameter is called the degrees of freedom (df). In
general, the degrees of freedom of an estimate is equal
to the number of independent values that go into the
estimate minus the number of parameters estimated

as intermediate steps in the estimation of the param-
eter itself.

For example, for a random sample of n independent
data, points, if the sample mean, X is estimated us-
ing the standard formula 1/n )" z;, then the degrees
of freedom for X is n. This is because X uses all
of the independent values from the sample and does
not rely on any other parameter estimates in its cal-
culation. However, if the variance, s? , is estimated
using the standard formula 1/(N — 1) Y (z; — X),
then the degrees of freedom is equal to the number of
independent values (n) minus the number of param-
eters estimated as intermediate steps (one, X) and is
therefore equal to N-1.

3.7 Chi-Square Goodness of Fit
Test

In the study of genetics one frequently runs into sit-
uations that are resolved using what is called a Chi-
Square Goodness of Fit Test. This is a test that is
particularly adept at determining how well a model
fits observed data. It allows us to evaluate how
“close” the observed values are to those which would
be expected given the model in question. Here is
a brief explanation of how and why the Chi-Square
Goodness of Fit Test is effective in these situations.?

In general, the chi-square test statistic has the
form:

5 Z (observed — expected)?

= 7.1
X expected ’ (3.7.1)

and if x? is large, than the model is a poor fit to the
data. Before we get into the details of the theory
behind this statistic, let’s begin with a short example
of how it is used.

Example 3.7.0.1 (A Fair Coin?)

Imagine trying to determine if a coin is fair or not.
If the coin is fair, than the probability of getting
heads is p1 = 0.5 and the probability of getting tails
is po = 0.5, other wise p; # 0.5 and py # 0.5. It is im-
portant to note that since the coin has only two sides,
p2 = 1 —p;. While this equality may seem obvious, it
will be useful when we are determining the degrees of
freedom for our test. If we tossed the coin 100 times,

2A lot of the material in this section was plagiarized
from the web page: http://www.stat.yale.edu/Courses/1997-
98/101 /chigf.htm, author unknown.
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we would expect to get heads 100 x 0.5 = 50 tim
We know, however, that even though the probal
ity of getting heads is 0.5, there is a chance that
might get a few more or a few less than 50 he:
in 100 tosses. The question is, how much variati
in the number of heads will we allow before we :
confident in rejecting the hypothesis that p = 0
This is where the Chi-Square Goodness of Fit con
in handy.

In order to test the hypothesis that the coin is fz
you toss the coin 100 times and observe that it land
on heads 38 times. From this data alone, we are al
to determine that the coin must have landed on tz
62 times and we note this in Table ?7?.

Observed Expected
38 50
62 50

Heads
Tails

Table 3.7.1: Both observed and expected results of
100 coin tosses.

With this data in our hands, we can compute a x?
test statistic and use it to determine the fairness of
the coin. That is,

., (38—50)2 (62— 50)2
X'="%0 T 50
_ 144 144
50 ' 50
= 5.76.

We can now see where this values lies in a x2 distri-
bution. If it is in the tail of the distribution, then the
probability of getting 37 heads using a fair coin would
appear to be a very rare event. If it is in the middle
of the distribution, then it might be quite common
to obtain 38 heads in 100 tosses from a fair coin.

In order to examine our value in the context of
a x? distribution we must specify which one by de-
termining its degrees of freedom. We calculate the
total degrees of freedom by looking at the total num-
ber of parameters in our model, 2 (p; and p2), and
subtracting 1 because p is not independent from p;
since po =1 — p;. Thus, we must see how much area
is under the curve of a x? distribution (the subscript
1 indicates the degrees of freedom) from 5.75 to oo.
We can do this easily using Octave:

octave:1> 1 - chisquare_cdf(5.76, 1)
ans = 0.016395

15

0.5

areaunder curve form 5.76 on up is 0.016395 |

L

5.76

Figure 3.7.1: The area under the x? graph that represents
the p-value, the probability our hypothesis that the coin is far
is correct. Since the p-value/area is so small (1.6 percent) we
will reject our hypothesis.

The probability that a value of 5.76 or larger would
come from the x? distribution is less 0.016395, which
is very small (see Figure ??). Much smaller than
the standard 5 percent used as a cutoff to determine
whether we should accept 5.76 as coming from the x3
distribution. Thus, we will reject the hypothesis that
this coin is fair. ||

3.7.1 Why It Works

Consider a binomial random variable Y ~ Bin(n,p)
with mean py = np and variance 0% = np(1 — p).
From the Central Limit Theorem, we know that
Z = (Y — py)/oy has an approximately a standard
Normal(0,1) distribution for large values of n. Since
the square of a standard normal random variable has
a chi-square distribution with one degree of freedom,
Z? is approximately x?7.

Now consider the random variable Y; which has a
binomial(n, p;) distribution and let Y3 = n — Y] and
p2 =1 —p;. Then

72 — (Y1 —np1)?
np1(1 = p1)
(Y1 —np1)*(L = p1) + (Y1 — np1)*(p1)
np1 (1 — p1)
(Y1 — np1)?
n(l-pi) ’

(Y1 —npy)?
np1

and since

(Y1 —np1)* = (n =Yz —n+npy)* = (V2 — np2)*,
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we have

YY) — 2 Y — 2
72 _ ( 1 npl) + ( 2 np2)
np1 np2

)

where Z? has a chi-square distribution with 1 degree
of freedom.

In general, for k£ random variables Y;, where i =
1,2,...,k, with corresponding expected values np;,
a statistic measuring the “closeness” of the observa-
tions to their expectations is the sum:

(Vs — npi)®

R
NPk

(Y1 —npy)? N (Y2 — npo)?
npi np2

which has a chi-square distribution with k£ —1 degrees
of freedom. This is because we know that the sum of
all of the probabilities, p,...,pr, must equal 1, and
thus we can derive p; by subtracting the first k — 1
probabilities from 1.

Example 3.7.1.1 (Allele Frequencies)

The population is said be in Hardy-Weinberg equi-
librium for a given gene if it is:

1. Stable with respect respect to the allele and
genotype frequencies of interest. That is, al-
lele frequencies do not change from generation
to generation.

2. The genotype frequencies in the progeny pro-
duced by random mating among parents is de-
termined solely by the allele frequencies of the
parents.

In other words, if, for a particular gene A with alleles
A, and A-, and the allele frequencies in the parents
are f(A1) = pand f(A2) = ¢ (and thus p+¢=1or
g =1 —p), than the percentage of offspring with the
genotype AjA; = p?, AjAy = 2pq and Ay Ay = ¢2.

Genotype | Observed

A A 22
A A, 216
Ay A, 492

Table 3.7.2: Observed genotypes at the MN blood
group gene locus for individuals in a human popula-
tion. Source: Plagiarized from Michael D. Purugganan, class
notes.

Given the data in Table 7?7, we can calculate the
observed allele frequencies. That is,
(22 + 216/2)

=222 1
p 730 0.178,

and
g=1—-p=0.822.

With values for p and ¢, we can now calculate
how many individuals with each class of genotype
we would expect if the population was in Hardy-
Weinberg Equilibrium. The results of this calculation
are in Table ?7?.

Genotype | Observed | Expected

AA 22 23.14
AA, 216 213.60
ArA, 492 493.26

Table 3.7.3: Both observed and expected genotypes
at the MN blood group gene locus for individuals in
a human population.

Now that we have both observed and expected val-
ues for each class of genotype, we can calculate a
chi-square test statistic. That is,

,  (22-23.14)2

T 2314
(492 — 493.26)2
493.26

(216 — 213.60)2
213.60

= (.086

Now all we need to do is compare this value to that
from a chi-square distribution. The trick, however,
is determining how many degrees of freedom there
are. Here we have three different categories, or geno-
types, and each one has an associated probability
of membership. However, two of these probabili-
ties are dependent on one of them. That is, since
qg = 1 — p the probability of having the genotype
A1Ay = 2pg = 2p(1 — p) and the probability of hav-
ing the genotype AsA,; = ¢ = (1 — p)2. Thus, since
there is only one linearly independent probability, the
degree of freedom is 1.

We can now use Octave to determine the probabil-
ity our hypothesis is correct:

octave:2> 1 - chisquare_cdf(0.086, 1)

ans = 0.76933

So, since we usually fail to reject the hypothesis that
the data comes from our model if the probability is
more than 5 percent (and in this case it is 77 percent,
see Figure ?77), we will not reject the hypothesis that
that alleles for the MN blood type gene are in Hardy-
Weinberg Equilibrium. ||
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Figure 3.7.2: The area under the x} graph that represents
the p-value, the probability our hypothesis that the Locus for
the MN blood group is in Hardy-Weinberg Equilibrium is cor-
rect. Since the p-value/area is so large (77 percent) we will
accept our hypothesis (or Fail to Reject our hypothesis).

3.8 Generating Random
Variables

3.8.1 Sampling From a Distribution

Suppose you want to do some experiments that ex-
plore the stochastic nature of a process. For example,
you incorporate a random variable into a model. The
first thing you must do is create some observations
that have variation according to the distribution of
the random variable. Most often, the method used
to do this is to invert the Cumulative Distribution
Function (described below) and feeding it a random
number between 0 and 1.3

It is possible to convert from a uniform(0,1) ran-
dom variable to something nonuniform, and also the
reverse. Although this may sound backward, and in
fact is, we will start by describing how to do the re-
verse.

Figure 7?7 shows a typical exponential distribution,
which starts at 1 and ends near zero. The Cumu-
lative Distribution Function (or CDF) for the same
distribution can be used to map an exponential ran-
dom variable to a uniform(0,1) variable and is shown
in Figure ??. The CDF for any distribution is de-
fined as the cumulative probability from the smalled
number in the domain to a specific point in the dis-

3Most computer languages have standard routines that do
this. For example, rand() in Perl and in C there is rand() and
random(), which both return random numbers between 0 and
RAND_MAX

pdf = en(x)
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Figure 3.8.1: PDF of an exponential process with rate = 1:
pdf(z) = e™"

tribution, p. That is, P(X < p). If X is distributed
by the exponential function f(z) = e~ %, then

P
P(X <p) :/ e %dz
0

= [—e7"[d]

=1—¢€P.

Since the total area under any distribution is always
1, that is for any distribution, g(z),

/0; g(z)dz =1

it is clear that the CDF for any distribution can be
used to map any random variable from that distri-
bution to a number between 0 and 1. Since no part
in the CDF will be visited any more than any other
part, the mapping is to a uniform(0,1) distribution.

To map a uniform(0,1) random variable to an expo-
nential distribution you simply do the reverse. That
is, use the inverse of the exponential distribution
CDF, x = —log(1—y), and apply it to a uniform(0,1)
variable.

Here is some Octave code that demonstrates this
transformation (see Figure ?? for the histogram):

octave:1> uniforms = rand(50, 1);
-log( 1 - uniforms);

octave:3> hist(exps) # plot histogram

This method, in general works very well for the
subset of distributions that are formed by transform-
ing uniform random variables. These include the
Beta, Gamma, Chi-squared, F, Exponential, Double
Exponential and Weibull distributions. Other distri-
butions rely on tricks to generate random variables.

octave:2> exps =
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Figure 3.8.2: CDF of an exponential process with rate = 1:
cdf(z) =1—e""
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Figure 3.8.3: A histogram of 50 exp(1) random variables
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Despite the fact that this text attempts to avoid de-
scribing tricks at all costs, due to their utility we will
list two of them.

3.8.2 Generating Normally  Dis-

tributed Random Variables

There are two primary methods for generating nor-
mally distributed random variables. The first method
relies on the central limit theorem which states that
if EX = p and Var(X) = 02, then for independent
and identically distributed samples from any distribu-
tion X has an approximate N(u,o2/n) distribution,
where n is the sample size. The utility in this first
method is that it is very easy to remember off the top
of your head and is relatively easy to compute with
a computer.

The second method uses a direct transformation,
and, while being just as easy to compute using a com-
puter, is a little tricky to remember. This method is
called the Box-Muller algorithm. The steps involved
are:

1. Generate to independent uniform(0,1) variables,
Uy, Us.

2. Let R = y/—2log(U1) and 0 = 27U,
3. Let X = Rcos(f) and Y = Rsin(6).

where X and Y are independent normal(0,1) random
variables. See Appendix ?? for an Octave program
that implements this algorithm.

3.8.3 Generating Random Variables
From a Discrete Distribution

For this, let us consider the following hypothetical
discrete distribution:

0 z<0
025 0<z<l1
flx) = 06 1I<z<2 (3.8.1)
025 2<zx<3
0 3<z

Thus, with this distribution, you would expect a
quarter of the data points in a random sample to
come from between 0 and 1, half to come from be-
tween 1 and 2 and the remaining quarter to come
from between 2 and 3.

In order to simulate a random sample from this
distribution, we can map it to an interval ranging be-
tween 0 and 1. This can be done by simply taking



"line 1

90 —
80 B
70 —

60 - B

50 -

40

30 -

20

10 |

0 L L L A L
0 0.5 1 15 2 25 3

Figure 3.8.4: A histogram of 200 simulated random variables
from generate_discretes.m.

length of each interval, multiplying it by its prob-
ability and storing the new value in an array. For
this distribution, the first index of the array would
contain 0.25, the second 0.5 and the third 0.25. To
generate the random sample, select a random number
between 0 and 1 and check if it is greater than the
value in the first index. If it is not, then the point
falls between 0 and 1 in our distribution. We can
then choose another random number between 0 and
2 to determine which particular value it is. If the first
random number is greater than the value at the first
index, then we check to see it if it is greater than the
values at the first and second indices combined (0.25
+ 0.5) and continue this procedure until we have es-
tablished which segment in the distribution it comes
from and then determine the exact value from that
segment by choosing another random number. This
particular example has been coded in octave and the
program can be found in Appendix ??. A histogram
of the output can be seen in Figure ?? where the
sample size was set to 200.

3.9 Parameter Estimation Us-
ing Maximum Likelihood

3.9.1 Overview

Maximum Likelihood is a method for estimating pa-
rameters for distributions. For example, if you have a
set of independent* data points, X, where X is a vec-

4Independent simply means that knowing the value of one
specific data point does not tell you anything about the value of
any of the other data points. For example, if our data consisted
of the results of tossing a coin, knowing that z; landed heads
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tor of points that have been collected from the same
normal distribution where p and o2 are unknown,
then maximum likelihood would derive fi and 62, es-
timates for u and o2 respectively. The maximum
likelihood estimates (MLEs) are such that they max-
imize the probability or likelihood of the data, X.

3.9.2 Method

Maximum Likelihood simply uses all those Max/Min
strategies that we learned in high-school calculus and
then promptly forgot.

Here’s the general strategy in for solving for the
value of a parameter that maximizes the probability
of the data:

1. Take the first derivative of the function with re-
spect to the parameter that you want to solve
for.

2. Set the derivative equal to zero and attempt to
solve for the parameter.

3. If you come up with a single solution, take the
second derivative of the original equation with
respect to the parameter, substitute in your solu-
tion for the parameter and then check to see that
it is less than zero. If so, then you have found
the value that maximizes the function. (This has
worked in almost every situation I have encoun-
tered.)

4. If you come up with multiple solutions, check
all the solutions and check the endpoints of the
range as well. (You almost never have to do this.)

Often times the log of the likelihood function is
maximized instead of just the likelihood function.
This is because it is almost easier to work with the
log of the likelihood function than the likelihood func-
tion itself. We can justify this simplification because
all probability distributions are non-negative for the
domain of z, and the function log[z] is an increasing
function in z, thus, the solution for the parameter
that maximizes the probability distribution given the
data is the same as the maximum of the natural log-
arithm of the distribution given the data. Also, we’ll
use the notation, £(6|X) to mean The mazimum with
respect to 0 (the parameter that we want to estimate)
of the probability of the data, X. It is also worth not-
ing that most statisticians use “log” to mean “natural
log” or “In”.

would not tell us a thing about whether z; landed heads or
tails.



Example 3.9.2.1

From the overview, let’s assume that we have X, a
vector of n independent data points, 1, ..., Z,, col-
lected from the same normal distribution where both
u and o2 are unknown. Since each element in X is
independent, the probability of the data as a whole
is the product of the probability of each element in
X.5

We will begin by finding an estimate for u. To do

this we will assume that we know o2.

n
H 1 ezoz (@i—n)?

- V2702

- L o Sw?

L(u,®|X) =

and

log [£(u,0|X)] = = log[2] - 7 loglo”]

[y
3

d 1 G se
5108 [L(n,0*[X)] = 5 D (ai — p) £ 0,

6” i=1
Thus,
1 n
3 (x; —p) =0
R
> (@i—p) =0
i=1

(3.9.2)

5For example, if your data set was two heads when a coin is
tossed twice, then the probability of the data is (1/2)(1/2) =
1/4, since the probability of getting heads on any one toss is
1/2.

Verifying that (& is indeed a maximum requires us
to take the second derivative of Equation 7?7 and
make sure it is negative.

O og [£(u,0%X)] = =2 <0
Wog[ (1,07 )]_F< .

Thus, since ji is the only extreme point, is indeed a
maximum.

Now we will solve for 62, the MLE of ¢2. Starting
from Equation ?? and substituting in our solution for
1, we can take the partial derivative with respect to
o?. Thus,

8 2| _ —n 1 ~ o\ 2 set
@log [L(o |X,X)]—W+@;($1—X) =0,

and

-n -~ =9
W‘Fﬁzcﬂh—){) =0

i=1
—no? + Z(acz -X)?=0
i=1

n

1 _
o = - z_;(a:, —X)2 (3.9.3)

To verify that our solution for 62 is indeed a max-
imum, we have,

0? 2 - n 1 « —.9
Wlog [5(0 |X7X)] = Q—FZ(%—X) .
i=1

Substituting in our solution for o we have,

TS X S = %)
=S @ o X)E  Smoxe O

and thus, our solution for ¢2 is also a maximum.

One final note before we conclude this example. If
we had attempted to solve for the MLE for o2 before
we solved for i, then we would to have ended up with
the solution

which still contains the unknown parameter p. At
this point, we would have to pause in our derivation
of 62 and solve for fi. Once we had a solution for fi,
we would then substitute it in for g to complete our
derivation of 62. ||
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3.9.3 Properties of
Maximum Likelihood Estimates

Maximum likelihood estimates have a wealth of useful
properties. T’ll just list a few:

e They are consistent, meaning that for large n,
they converge to the parameters that they esti-
mate.

e They are asymptotically efficient, that is, for
large n, they have minimal variance.

3.10 Likelihood Ratio Tests

3.10.1 General Overview

Likelihood ratio tests are ratios of distributions using
parameters derived using both constrained and un-
constrained maximum likelihood. That is, the likeli-
hood ratio test, A is,

constrained maximum likelihood

(3.10.1)

unconstrained maximum likelihood’

where the constraint placed on the MLEs in the nu-
merator is the hypothesis that you want to test. In
Section ?? we saw how to solve for un-constrained
MLEs. In the following examples we will see how to
solve for and work with constrained MLEs.

The closer the ratio in Equation ?? is to 1, the
more probable that the hypothesis that we are testing
is true. The closer this ratio is to 0, the less likely
that the hypothesis is correct. Almost all statistical
tests can be derived from likelihood ratio tests. As
usual, the best way to get a grasp of this concept is
to see a few examples.

Example 3.10.1.1

Imagine that we have a set of data, X, as described
in Example ??, and we want to test to see if y = 3.
That is, let the null hypothesis be Hy : g = 3. In
Example ?? we derived the unconstrained maximum
likelihood estimates for u and o? (see Equations 7?7
and ??). In this case, to derive the constrained MLEs
we simply substitute in the value 3 wherever ji is used,
including the derivation of 42. Thus,

’I::, i(x, - 3)2

i=1
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and our likelihood ratio test is:

max
_ Ho ‘C(/J/a U2|X) _ Pr(xlga&g)
C L(wo?X) Pr(X|a,6?)

2oz (@3

A
H?:l \/217‘.—&3
[T 7

(2m62) " 2exp { it g Tlai = 3}

27“?2)7"/26?(1){% (@i — ﬂ)z}

ez (Ti—)?

Example 3.10.1.2

Imagine that we have the same set up as we had in
Example ??, only this time, the hypothesis that we
want to test is 4 < 3. In this case, when 4 < 3, we let
fie = fi. However, when i > 3, then i, = 3. Thus,

Pr(X|p,6%) _ N
Frxie = b p<d
A= 1
Pr(X[3,62) _ (&2\" N
e = (&) . >3

Notice that the LRT for Hy : g # 3 is the same as
the LRT for Hy : 4 < 3 when i > 3. ||

3.11 Solving Constrained
Optimization Problems
with Lagrange Multipliers

3.11.1 General Overview

It is often the case that you have some function, for
example f, and you want to find its extreme values
(maximum and or minimum). If f is a function of
a single variable, f(z), then all that’s needed is to
take its derivative and check where it equals zero. If
we then went a little further and wanted the maxi-
mum and minimum values of f(z) when z also falls
on a specific line (or is otherwise constrained by some
other function g(z)), then all we would need to do is
find out where (and if) the two lines intersected and
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Figure 3.11.1: A 3-D graph of two surfaces intersecting

check to see which values for x give us the largest and
smallest values from f(z).

When functions of multiple variables are involved
and we are still trying to find constrained maximums
and minimums, we do a similar thing. In this case,
instead of picturing lines intersecting, we can imagine
surfaces intersecting (see Figure ??). Regardless of
how we visualize the problem, there are two primary
strategies for solving this sort of problem. The first
one, algebraic substitution, works well when there
are only two variables involved (otherwise you run
into the problem of having more variables to solve
for than you have equations). In this case you simply
use the constraint equation to solve for one variable
in terms of another, substitute this solution into the
equation you wish to find the maximum /minimum of
and then take the derivative to solve for the extreme
points. The second method, Lagrange multipliers,
(the one we’ll be covering here), is a little more
fancy, but works well when there are more than two
variables involved.b 7

To find the extreme values of f(x,y,2z) subject
to the constraint g(z,y, z) = k:

1. Find all values of z,y, z and A such that
Vi(@,y,2) = \Vg(z,5,2)  (3.11.1)

and g(z,y,2) =k

6There is a third alternative, called “variational method”
which is interesting, but I don’t quite fully understand well
enough to write about at this time

7For now we will discuss how the method works for func-
tions of three variables, but it works fine on functions with two
variables (as you’ll see in Example ??) and trivially extends to
functions with more.

2. Evaluate f(z,y,2) at all points, (z,y,2), that
result from the previous step.

Example 3.11.1.1

In this example we will use equations with only two
variables and demonstrate how both algebraic sub-
stitution and Lagrange multipliers result in identical
solutions.

Let’s find the extreme values of

flz,y) = 2® +2¢° (3.11.2)
that are also on the circle
4yt =1 (3.11.3)

(thus, in this case, g(z,y) = 22 + y?).

Using Algebraic Substitution: Using the con-
straint equation, 2 + y? = 1, we’ll solve for y? by
moving z? to the other side. Thus, y2 = 1 — z2.
We can then substitute 1 — 22 for y? into 22 + 2y
(Equation ??), giving us

flz) =22 +2(1 —2?)
=224+ 2— 222
=227 (3.11.4)

We can now take the derivative of Equation 7?7 and
solve for the extreme points. That is,

(@) = —20
220
z=0. (3.11.5)

Combining Equation ?? with Equation ??, we can
determine that when z =0, y = £1.

Now we must do the same thing only this time,
we must use Equation ?? to solve for 2. That is,
from Equation ??, 22 = 1 — y2. Substituting this
into Equation ??, we then follow the same steps as
before to determine that when y = 0, z = +1. We
can then plug these points into Equation ?? to find
that Thus (0,£1) are both maximums and (+1,0)
are both minimums.

Using Lagrange Multipliers: To use the La-
grange multiplier method, we’ll first set up the system
of equations defined by V f(z,y,2) = AVg(z,y, 2):

2z = A2z
4y = A2y.

(3.11.6)
(3.11.7)
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From Equation ?? we can determine that either
z=0or A =1. If x = 0, the constraint equation,
(Equation ?7?), forces y = £1. If A = 1, then we can
use Equation ?? to determine that y = 0 and thus,
from Equation ??, x = +1. The points of intersection
are therefore (0, £1) and (£1,0), the same solutions
derived using algebraic substitution. ||

Example 3.11.1.2

We want to find the maximum value of

f(z,y,2) = zyz (3.11.8)
subject to the constraint
2zz + 2zy +zy = 12 (3.11.9)

(thus, g(z,y,2) = 22z + 2zy + zy). In this example,
the equations involve more than two variables so al-
gebraic substitution is not an option. Thus, it makes
sense to use the Lagrange multiplier method here.
We will first set up the system of equations defined
by Vf(z,y,2) = AVg(z,y, 2):

yz = A2z +y) (3.11.10)
zz = A2z 4+ x) (3.11.11)
zy = A(2z + 2y). (3.11.12)

If we multiply Equation ?? by z, Equation ?? by y
and Equation ?? by z, we have,

zyz = A222 + zy) (3.11.13)
xyz = M2yz + zy) (3.11.14)
zyz = M2zxz + 2yz). (3.11.15)

We can now use these equations to solve for x and y
in terms of z. Using Equations ?? and ?? we get,
A(2zz + zy) = A(2yz + zy)
2xz + xy = 2yz + xy
T =y. (3.11.16)
Using Equations 7?7 and ?7 we get y in terms of z,
that is,
A2yz + zy) = A2z + 2y2)
29z + xy = 2xz + 2yz
y = 2z. (3.11.17)

We can now substitute 2z for both z and y into Equa-
tion 77 to solve for z:

2(22)2 4+ 2(22)z + (22)(22) = 12
422 442 + 422 =12

z=1. (3.11.18)
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Using Equations ??, ?? and ??, we can determine
that the only place where both functions intersect is
when z = 2,y = 2 and z = 1. Thus f(2,2,1) =4 is
both the maximum and minimum from this function
subject to the constraint, Equation ??. ||

3.12 Matrix Calculus

Basically derivatives and integrals of matrices parallel
derivatives and integrals of ordinary functions. The
easiest way to figure out what the derivative or inte-
gral will be is to expand the matrix and then take an
element by element derivative or integral.

If we let x be an n x 1 vector and let y = f(x),
where y is an m x 1 vector (for example, if f(x) = Ax,
where A is an m x n matrix, then y will be an m x 1
vector), then

Oy1 Oym

oz1 oz1
6y % Bym

7] o
== ” (3.12.1)
ox : :

Oy OYm

0T n OTn

We will also include the following to our definition:

oy ay\’
and
dy' _ oy

Now we’ll list two very useful results.® If x is an
n x 1 vector and A is an m X n matrix of elements
that are not functions of x, then

O0Ax

— A’
g A

(3.12.4)

If A is an n x n matrix of elements that are not
functions of x, then
0f (x' Ax)

_ li
o =(A+A)x

(3.12.5)

and if A is symmetric, that is A = A’, then

(A + A'x = 2Ax.

8Complete derivations of these results can be found in Ap-
pendix 77 and 77.



3.13 Linear Models

3.13.1 General Overview

Let’s say that you are studying a type of chicken and
you have reason to believe that its weight will give
you some indication of how much food it will eat in
a year (a fairly reasonable thing to suspect). Ideally
we would like to eventually have some sort of function
that we could use hen weight for input and the result
would be an estimate of how much feed we might
expect it to consume.

So, you go out and weigh a hen and it turns out to
weigh 4.6 units and consumes 87.1 units. From this
single data point, it would be impossible to tell if a
hen that weighed more would eat more (which would
be what we suspected) or would eat less. Thus, we
go out an collect another data point. This time the
hen weighs 5.1 units and eats 93.1 units. If we as-
sumed that there was some sort of linear relationship
between the hen’s weight and the amount of feed it
consumes, then we could use the two data points to
solve for the unknown parameters in our model, us-
ing them to solve for an intercept (which we will call
Bo) a slope (which we will call 8;). Thus, using the
following two equations

87.1 = fBy + B1(4.6)
93.1 = Bo + f1(5.1)

and standard algebraic techniques, we can determine
that By = 31.9 and B¢ = 12. Thus our model is:

f(z) = 31.9 + 12z. (3.13.1

After measuring several more points (Table ??) you
realize that none of them, except for the first two
which were used to create the model, fall on the line
defined by f(x) (See Figure 77).

At this point we might realize that it was fairly ar
bitrary to decide to use the first two points to creats
our model. We could have used the second and ths
third or the fourth and fifth, but using any specify
pair of points to define our model doesn’t make i
any less arbitrary. What we would really like to do
is use all of the data that we have collected to create
our model. Since it is obvious that all of the data
does not fall on a single line? we would like to create

91t is important to note, that just because the data does
not all fall on a single line, doesn’t mean that the model is not
linear. There could have been errors in measurement, both
human and mechanical, that cause the data to deviate from a
line.
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Body weight, X Food Consumption, ¥

4.6 87.1
5.1 93.1
4.8 89.8
4.4 91.4
5.9 99.5
4.7 92.1
5.1 95.5
5.2 99.3
4.9 93.4
5.1 94.4

Table 3.13.1: Average body weight X and food con-
sumption Y for 50 hens from each of 10 White
Leghorn strains (350-day period). Source: Plagiarized
from Steel, Torrie and Dickey [?]. Data from S. C. King, Pur-
due University
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Figure 3.13.1: A plot of the Leghorn data from Table 7?7
with a line drawn using the first two points to define the slope
and the intercept (Equation ??). Notice how poorly this line
estimates the other data points. For example, with a single ex-
ception, the estimates made by Equation ?? are low. Compare
this with the graph shown in Figure 77.
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Figure 3.13.2: A plot of the Leghorn data from Table ??
with a line drawn using Least Squares to estimate the slope
and the intercept. Notice how even though this line passes
through fewer points than Equation ??, shown in Figure 77,
it tends to closer to the majority of the data.

our model in such a way that the difference between
the points that the model predicts and the observed
data is minimized (see Figure ??). This section con-
cerns itself with describing both a method for creating
models that achieve this called Least Squares, and a
means to evaluate the the properties of these models.
This method works well with a wide range of data
(not just simple (z,y) pairs) and this will be seen in
the examples.'©
Least squares is a method for estimating parame-
ters for linear functions (or, in more technical jargon,
functions that are linear with respect to its coefli-
cients!!) such that they minimize the sum of squares
of differences between the y-values of the data points
and the corresponding y-values of the approximating
function.
We start by considering a linear model of the form
Yi = Bo + P1%in - + BmTim + €, (3.132)
where ¢ = 1,...,n is the number of observations.
This system of n equations can be written in matrix

10However, see Example 77 for the solution to this current
conundrum!

1 For a function, f(z), to be considered linear with respect
to its coefficients means that if the function were considered
to be a function of the coefficients, g(c), then g(ac) = ag(c).
For example, the function, f(z) = co + ci1z, can be written
in terms of ¢, g(c¢) = ¢o + c1z and g(ac) = aco + aciz =
a(eco + c1z) = af(c). Another example of a function that is
linear with respect to its coefficients is f(z) = ¢ sin(z) + c1€?,
because g(ac) = ag(c). An example of a function that is not
linear with respect to its coefficients is f(z) = sin(cox) + c122,
since g(ac) = sin(acoz) + ac1z? # afsin(coz) + c122) = ag(c)
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notation quite concisely with,

Y =XB +e, (3.13.3)

where Y, called the dependent variable, is an n x 1
vector of observed measurements'2, B is an 1 x m
vector of unknown model parameters, X, called the
independent variables or the design matriz, is an n x
m matrix of independent variable values and € is the
measurement noise.'®

3.13.2 Setting up Y and X

Setting Y is always a strait forward procedure: you
simply fill the vector with the measured values. Set-
ting up X, the design matrix, however, depends on
the type of data you have as well as the model you
are trying to fit. All of this is best explained with a
series of examples.

Example 3.13.2.1

First we will show how to set up the design matrix
when there is a single independent variable involved.
If we are given the data,

Yyl
10
4(1”°
5|2

and the function we wish to fit using least squares is,

y = Bo + b,
then
1 1 0
Y=|4 and X = 1 1
5 1 2

The column of 1s in X represents 8o X 1 = fo.
If the equation we wanted to fit was quadratic,

y = Bo + Biz + Boz’,
then

1 1 00
Y=]| 14 and X=1]11 1 1
5 1 2 4

121n Section ?7, Linear Models with Multiple Dependent
Variables we will generalize the test developed here for multi-
ple dependent variables.

1371 like to use this concept instead of calling € “error” which
it is not. It simply reflects the limits of our ability to capture
the totality of what is going on. With perfect models, we’d
be able to capture the thermal noise generated by molecular
motion and have a perfect fit. So - errors - NO, noise - YES.



If the equation was

Bosin(z) + pr2?,

then
1 sin(0) 0
Y=|4| and X=| sin(l) 1
5 sin(2) 4

Tm

and any function that is linear with respect to the
coeflicients,

y = Bofo(®) + Brfi(x) + -+ Bufu(T),

then
fo(zo)  fi(zo) Fn(zo)
fo(z1)  fi(z1) Tn(z1)
X = : :
folwm) Fi@n) - falom)

Example 3.13.2.2

If we are given a dataset that contains multiple inde-
pendent variables, for example:

ylao| o | o

10 |4.3]0.2300
4] 12300010’
5|2 |7.5]0.0004

and we want to find a fit for the function

y = Po + Prx1 + Bazo + Psxs,

then you would end up with

1 1 0 43 0.2300
Y=|4| andX=|1 1 23 0.0010
) 1 2 75 0.0004

Example 3.13.2.3

Sometimes the independent variable is a list of treat-
ments and the dependent variable consists of a list of
values measured after each treatment. For example,
if you have the data set,

Treatment 1 | Treatment 2 | Treatment 3

13.2 10.4 15.2
12.8 9.7 15.0 ’
13.5 10.2 15.8

we can still use a linear model,

y = fix1 + Ba2z2 + B3zs

and estimate the parameters ;, f2 and #3. However,
in this case, z; consists of a 0 or a 1, depending on
which treatment a given y value was collected from.
Thus,

13.2 1 100
12.8 100
13.5 100
10.4 010
Y=|97|,X=[010
10.2 010
15.2 001
15.0 001
| 158 | [0 0 1]

For a discussion of alternative design matrices (some
of which are used, for historical reasons, more of-
ten than this one) for this type of data set, see Ap-
pendix ??. ||

3.13.3 Parameter Estimation:
The Least Squares Method

Given data for the dependent and independent vari-
ables, X and Y, how should we estimate the values
for B, the model parameters? For this we can use
the least squares procedure. That is, estimate 8 by
minimizing the total squared differences between ob-
served and predicted values. The difference between
the observed and predicted values, often times called
the residual, is, in matrix notation, Y — X3. The
squared residual is (Y — X3)'(Y — X3). Thus,

F(B) = (Y - XB)' (Y - Xp)
=Y'Y - Y'XB-A'X'Y + B'X'X5.
(3.13.4)

To minimize Equation ??, we take its derivative
with respect to 3, set it equal to zero and solve for



B.
d
95 Y Y - YXB- BX'Y + B'X'Xp
= —X'Y-X'Y +2X'X3
= —2X'Y +2X'X3 ¥ 0,
and thus!'*

B =[X'X]"X'Y. (3.13.5)

If we substitute our estimated parameters, 3, into
Equation 7?7, we get the following simplification for
calculating the squared residual:

F(3)
= Y'Y-Y'X3-XY+3XXS3
= YY-Y'X3-FXY+BXXXX) XY
- YY-YX3-8XY+8XY

= Y'Y -Y'XA. (3.13.6)

3.13.4 Properties of 3

If we assume that the elements in the noise vector, €,
are independent and normally distributed 5 random
variables with p. = 0 and 0? = ¢2, (which is not
terribly unreasonable to do since noise can come from
all kinds of sources and once we add them all up, the
central limit theorem kicks into effect,) then we can
determine if B is biased and what its variance is.

Before we start, however, we will note that the as-
sumption that € are independent and identically dis-
tributed normal(0, o2) variables implies that Y is also
normally distributed with mean X3 and variance o2.
This is because Y = X3 + € and X functions as a
location parameter.

14VWe can easily verify that this solution for @3 is a minimum
by taking the second derivative of Equation 7?7 with respect
to B and observing that when X is not completely filled with
zeros, the resulting quantity, 2X’X, will be positive.

151t is possible to use distributions other than the normal as
long as each ¢; is an independent variable with mean 0 (zero)
and variance ¢2. These conditions are called Gauss-Markov
Conditions. However, when you use a normal distribution, the
least squares estimates are the same as the maximum likelihood
estimates and are thus best unbiased estimators, which is a
good thing.

o1

First, we will show that B is unbiased.

EA = E {[X'X]"'X'Y}
= [X'X]" X' (EY)
= [X'X]7'X' (XB)
= [X'X]1X'X3
=B. (3.13.7)

Now we will derive the variance of B However, before
we get into it, let me first point out that E(ee') =
02. This can be easily shown using the facts that
Var(e) = 0%, Ee = 0 and the definition of variance.

That is,

Var(e) = E(e€') — E€E€’
=E(e€') - 0
o? = E(e€).

With that little bit of extra information in hand, we
are now ready to derive the variance of 3.
Var(3)
= E{(B-EH)(3-EB)}
= E{(X'X)'X'Y - g][(X'X)"'X'Y - 4]’}
= B{(X'X)'X'(X8+¢) - ]
[(X'X)*X'(XB+¢) - B},
since Y =X + €
= E{[B+XX)X'e-g]
8+ xX'X)'X'e-g]'}
- E{[(x'X)—lx’e][(X'X)—lx’e]'}
= E{(X'X) 'X'eeX(X'X) '}
= (X'X)"'X'E(ee)X(X'X)™!
— (XIX)71XIX(XIX)71 2
— (XIX)—I 2

An alternative and shorter derivation of this same
variance is as follows:

Var(3)

= Var((X'X)"'X'Y)

(X'X) X/ Var (Y)[(X'X) ' X]'
1x X(X'X) 1o?

=
= (X'X)~
= (X'X)! (3.13.8)



3.13.5 Hypothesis Testing

At this point we are ready to start evaluating our
estimated parameters. For example, if a parameter
Bi is very close to zero, it could mean that the data
scaled by S; is insignificant in our model. If all of the
values for the parameters are similar to each other,
it could mean that there is no difference between
the different data sets that form X. This is where
statistics comes in. Depending on the variability
in our data, our hypothesis that g; is sufficiently
close to zero to be insignificant, may or may not be
rejected. Statistics tells us how close, based on the
data, the parameter needs to be to zero for it to be
close enough accept our hypothesis (or, how far does
the parameter need to be from zero to reject our
hypothesis).

THE MAIN IDEA - Hypothesis Testing:

This section contains a lot of nasty math and so,
before we get there, I want to make sure that you,
the reader, stay focused on the main idea. The
main idea behind all of this nasty math is this:
We do two different least squares estimations for
the parameters for our model. In one estimation
we make no assumptions about what any of those
parameters might be, we simply try to determine
the values that best fit the data. In the other esti-
mation, we assume that our hypothesis about the
parameters (i.e. that some of them are equal to
zero, or that all of the parameters are equal to
each other) is correct and require least squares to
generate parameter values given these constraints.
If our hypothesis turns out to be correct, these
two different parameter estimations will be quite
similar. If our hypothesis is not correct, then the
estimations will be different. Our goal here is to
develop a statistical procedure for evaluating the
similarity or difference between the two estima-
tions.

If you can understand this idea, then you may
just want to focus primarily on the examples and
only breifly skim over the derivation of the statis-
tical proceedure.

The first thing we need to learn how to do is to
convert our hypotheses into matrix notation so that
we can use them to constrain our estimates of the
parameters, just as we did when we created LRTs
(see Section ??). The best way to learn this is to just
see a few examples.

Example 3.13.5.1

52

If we want to test if §; is zero, then we set up the
matrices (or, rather, vectors in this case):

B

[0 1; 01| & | =0
By

Bi=0

to to be the constraint that we use when we try to
estimate 3. The matrix on the left is generally called
the contrast matriz, and we will refer to it with C. ||

Example 3.13.5.2

If our model had four parameters and we wanted to
test to see if they were all equal'®, we would use the
following constraint.

1 00 -1 A [0
01 0 -1 B | Z 0
_ B3 0
001 —1 g | L0
Bi—Bs ] [0]
Bo—Ps | =10
B3 — B | | 0 |

If, given the data, there is a high probability that
this system of equations is correct, then all of the
parameters must all be equal. ||

In general our hypotheses will take the form

Cp =20,

where C is an t X p matrix where ¢ is the number of
tests in our hypothesis and p is the number of param-
eters we are estimating and @ is just a generalization
of the vector of zeros that tend to end up right side
of the constraints. It is usual for @ to contain only
zeros but sometimes it can contain other numbers as
well.

We can test our hypotheses by creating a LRT.
That is, by comparing the unconstrained optimiza-
tion of the least squares residual with a constrained
optimization of the least squares residual. In Sec-
tion ?? we solved for the unconstrained optimization
and the result was Equation ??. To solve for the
constrained optimization, that is

min
CB=86

16This would amount to an ANOVA test. See Example ?7
for a full treatment of this.

(Y - XB)'(Y - XB), (3.13.9)




we will use the method of Lagrange Multipliers (see
Section 77 for details on this method). Thus, we want
to find solutions to the equations:

V(Y - XB)(Y —=XB)=XNVCB -6 (3.13.10)
and
CB-60=0,
or
CB=20. (3.13.11)

Taking the gradient of Equation 7?, we have

V(Y - XB)' (Y - XB) = N'V(CB - 6)

0 0
55(Y ~XB) (Y -X8) =

—2X'Y +2X'XB = C'\

= (NCB-\6)

~X'Y + X'XA = %C’)\

X'X8 = X'Y + %C’/\.

Thus, in terms of A, the constrained optimization for
B is

~

B, = (X'X)7IX'Y + %(X’X)‘IC’)\

=B+ -(X'X)"'C'\ (3.13.12)

1
2
We can solve for A by multiplying both sides of
the equation by C and incorporating the constraint,
Equation ??, into our solution. That is,

CB=CB+ %C(X’X)_IC’)\ =0,
from Equation ??, and,
—CB = %C(X’X)‘IC’/\,
thus,
A=2[C(X'

x)~tc [0 - C,B] . (3.13.13)

We can substitute this solution into Equation ?? giv-
ing us the optimal solution for 8 in terms of X, Y,
and C only.

E>
I
™

“lo[C(X'X)"1C"1 (6 — CB).  (3.13.14)

53

The LRT for the hypothesis C8 = 0 is thus,

cp6=0 L(B,02[Y)
L(B,o?Y) -

The constrained and unconstrained estimates for
B derived using least squares are equivalent to those
found using maximum likelihood methods (see Sec-
tion ??) when we assume that the elements of €, are
independent and normally distributed (just as we did
when the derived the mean and variance for B) In-
tuitively this makes since because the normal distri-
bution is unimodal and symmetric about the mean.
Least squares attempts to position the mean of the
distribution so that the distance from the data points
and the mean is minimized, and thus, the data points
will tend to be in the middle of the distribution where
probability is highest. Maximum likelihood methods
attempt to position the mean so that the data points
have maximum probability of occurring, and thus,
clustered around the mean. Analytically, this equiva-
lence is easy to derive. Using the maximum likelihood
method described in Section ??, we have:

A=

L(Bl0%,Y) = (2m0?) ™ 2e5z (Y- XB) (Y-XB)
—n 1
log [»C] = 7 10g[27r02] — F(Y _ Xﬁ)I(Y . Xﬂ)
0 log[£] = 1 —(-2X"Y 4+ 2X'X3) = set
o8 °® 202 =

Solving for B gives us the same result we found using
least squares. That is,

B =X'X)"'X'Y

Using maximum likelihood to estimate 8 under the
constraint (Equation ??) results in the least square
estimate, 36 (Equation ?7).

Now we need to solve for the unconstrained and
constrained estimates of 2. We'll begin with solving
for the unconstrained estimate, 62 using maximum
likelihood methods.!” That is,

0 — ~ A\ se
o logl] = o %(Y — XB)'(Y —XB) 2,
thus,
—no? + (Y = XB)' (Y -XB) =0
= (Y - XB)(Y —XB). (3.13.15)

17That our solution provides the maximum probability is
easily verified in the manner demonstrated in Example 77



Solving for the constrained estimate, 62, is quite Now that we have MLEs for all of the parameters

simple in that it amounts to substituting Bc for @ in in the model, we can put together a likelihood ratio

Equation ??. Thus, test.
né? = (Y — XB3,)' (Y — X3,). (3.13.16) ) = PrX|B.,62)
Pr(X|B,5%)
However, in or('ier f(.)r i.t to be u'salg)le ig a .convenient (276%) " ex {—n(Y—X[‘?c)’(Y—XBC)}
way, we must simplify it and this is quite involved. . c P\ 2(v—x5.) (Y—x3,)
We'll start our simplification of 62 by first noting o 59\ —n/2 —n(Y=XB) (Y-XpB)
that ’ (2n6%) e { SOEOTE
_ (62) " exp3p
(Y -XB,)=Y-Xpj ~(62)2exp P
—X(X'X)'C' [C(X'X)'C] T (6 - Cf 52\ 2
(X'X)"'C'[c(X'X)"'C] " (6 -Ch) - (%) (3.13.18)
Thus, ¢
. . If Equation ?? is smaller than some constant ko2,
(Y - XB.)(Y - XB,) then the estimated variance under our hypothesis,
= (Y- x[-})'(y — X[’)) CB = 0, would be much greater than the uncon-

~(Y-X B) , strained estimated variance. Thus, we may infer that
) . our hypothesis is much less accurate and less likely
[X(X'X)*lc' [cx'X)tc] ™! (o - Cﬂ)] to be correct.
) 1 If we invert our test,
- [X(X'X)—lc' [Ccx'X)~'c] ' (o - cg)] i
A2\ 3
(Y - Xp) (Z—z) (3.13.19)
!
X(X'X)"'C' [C(X'X)"'C] ' (6 - Cf
+ [ ( ) [ ( ) ] ( ﬂ)] then we can reject our hypothesis when it is greater
[X(Xlx)—lcl [C(X'X)_IC]71 (0 _ Cé)] . than ko.
In order to determine what kg is, we will use the

While this is formidable, the second and third terms Same methods' th'at are use‘d to determine constants
equal zero'® and the last term reduces to'® for all other likelihood ratio tests (for example, the

z-test or the t-test). What we will do is set up the
- Cﬁ)' [C(X'X)_l C] -1 - Cﬁ) (3.13.17) inequality to define the rejection region

A2\ o

If we multiply Equation ?? by -1 twice, (that is, by (UL) ’ >k (3.13.20)
. 5 0 do.
1), we get the equivalent and more common form, o

- 1~ 2 lgebra to modify both sides until we can

v X/'X) ! 1 _0). and use alg y
(CB-6) [C( ) C} (CB-0) recognize the form of the left side. If the form on the
Thus left side is a standard distribution, (and in this case,
’ since we have a ratio of variances we’ll end up with
né2 an F-distribution), then we can use standard tables

¢ for this distribution to determine the value for the

J— e ! A
= (Y-XB)(Y -XpB) resulting k. Thus,

+(CB - 0) [C(X'X)"'C] " (CB - 6)
= no? (‘{C) > ko

N N 2
+(Cp - 0) [c(X'X)~'C] ' (CA - 0) >
Oc
1870 see this, all that is needed is to multiply them out and 52 > ki
some minor cancellation. See 7?7 for a full derivation of this
fact. 20Don’t worry too much about this, we’ll derive the value
19See 77 for a full derivation of this reduction. for this constant before too long
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All we have done so far is raise each side of the in-
equality to the n/2 power. It is important to note
that at this point we are no longer interested in the
value for kg but in k;. That is why we can substitute
ky for kg 2, Throughout this derivation we will be
modifying k; and simply replacing the old constant
with a new one, k;;1, since we will only be interested
in the value of k;; which will eventually be deter-
mined by a standard distribution. This concept is
fairly hard to grasp at first, but once you see the re-
sult, it may make more sense. Continuing with our
derivation, we have,

né? + (CB — ) [C(X'X)~1C] ™ (CB - 0) _—
- (CB — ) [C(xixrlc]*i(cﬁ -0 k
(Y —XB)' (Y — XpB)
(Ch-oy[cxX)'CI ' (Ch-0) _
(Y - XB)(Y —Xp)
and
(Ch—0y [cXX)'CI T (Ch-0O)/t
(Y —=XB)(Y — XB)/(n — p) ’
(3.13.21)

where ¢ is the number of tests (or rows in C), n is the
total number of observations (or rows in X or Y), and
p is the number of parameters we are estimating (or
columns in X). We can show that Equation ?? is an
F-distribution 2! by showing that the numerator and
the denominator are both o2 times chi-square vari-
ables divided by their degrees of freedom. Intuitively,
(CB — 0) and (Y — Xf) are random variables with
normal distributions in the numerator and denomi-
nator respectively. These appear as quadratic forms
(that is, in the form ABA'), and thus squares of these
variables. The square of any N (0, 1) random variable
has a chi-square distribution. See Appendix ?? for a
more complete treatment of this proof.

Since we are able to show that the left hand side
of Equation ??7 has an F-distribution, we can use a
standard table to determine the value of k3. That
is, k3 = Fyy,n—p,a, Where a is the probability we are
willing to risk rejecting the hypothesis even when it
is true.??

21 An F-distribution is defined as the ratio of two indepen-
dent chi-square variables, each divided by its degrees of free-
dom. That is,

Fnn = (u/m)/(v/n),
where u ~ x2,, v ~ x2 and u and v are independent.
22Just as a gentle reminder, the value, Fy, n—p o and the
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Example 3.13.5.3
Given the Leghorn data in Table ?? we can try to fit

the model,
Y= 130 + 613:7

to the data. Thus, setting up our Y and X matrices
we have,

87.1 1 46
93.1 1 5.1
89.8 1 48
91.4 1 44
99.5 1 59
Y=|ggp | andX=1, 47
95.5 1 5.1
99.3 1 52
93.4 1 49
| 94.4 | |1 5.1

Using the Octave program listed in Appendix ?7?,
which simply implements the test developed in Sec-
tion ??, we can test different hypotheses.

To test whether or not body weight is an indicator
of food consumption, that is, whether or not 3, =0,
we use the contrast matrix:

C=10,1].

Our constraint for estimating the parameters is thus,

CB=0
[01][%]:0
B1=0

and the output from our program is:

octave:2> general_linear (x, y, [0, 1]);
beta =

55.2633
7.6901

f_test = 16.232
p_value = 0.0037939
t_test = 4.0289

Thus, since the p-value is much smaller than 0.05, we
can conclude that 8; # 0 and that body weight does
indeed give an indication of food consumption. ||

Example 3.13.5.4 (ANOVA)



0 ppm 62.5 ppm 250 ppm 1000 ppm
55 47 49 36
47 51 44 41
46 40 46
53 44 51
47

Table 3.13.2: Study effect of different levels of PCB
on body weights (in grams) of mice. Source: Plagiarized
from Roger L. Berger, [?]

Given the data in Table ??.a modern ANOVA
model??

y = Bz + Paxa + B33 + Pas,

is easily computed using Equation ??7. We can set up
our matrices as follows:

95
47
46
53
47
o1
40
44
49
44
46
51
48
36
41

and X =

OO OO OO OO OO OO K K=
OO0 O0OOFRRFRRFROOOO
OO HMHMMBMMF OOODOOO OO
- O OO0 OoO O

To test the hypothesis that there is no difference in
the treatments (that is, all of the parameters are
equal), we create the contrast matrix:

1 0 0 -1
C=(010 -1
001 -1

ratio in Equation 7?7 represent points on an z-axis. The value,
Fin—p,a, represents a cut-off point, and anything larger, and
thus further away from the mean, is determined to not come
from the same distribution.

23This use of the word modern is perhaps wishful thanking
as it is the author’s opinion that this model should be consid-
ered thus. In practice, most people, for historical reasons, use
alternative models for ANOVA. See Appendix 77, for a full
discussion on this topic.

The constraint on our parameter estimation is thus,

CB=0
1 00 -1 A [0
010 -1 g2 =10
3
001 -1 s | | 0 |
Br—=Bs] [O]
Bo—Ps | =] 0
B3 — B | | 0 |

Using our Octave program, we get:

\4

[x, y] = load_data("mice.dat");
>c=1[1, 0, 0, -1;

>0, 1, 0, -1; 0, 0, 1, -1]

c

i 0 0 -1
0 1 0 -1
0o 0 1 -1

> general_linear (x, y, c);
beta =

50.250
45.500
47.600
38.500

4.3057
0.030746

f_test =
p_value =

Thus, since our p-value is less than 0.05, we can re-
ject our hypothesis that there is no difference in the
treatment means. ||

Example 3.13.5.5 (Randomized Block Design)

Sometimes there are extra sources of variation in
your data that you can clearly define. For exam-
ple, in a laboratory, 5 different people may have run
the same experiment and recorded their results. We
could treat all of the experiments equally, ignoring
the fact that we know that 5 different people were
involved and just use standard ANOVA for hypoth-
esis testing, or we could try to take into account the
fact that some people may be more precise than oth-
ers when making measurements and that some of the
variation in the data may be due to this. The goal of
this example is to demonstrate how this second op-
tion can work and how we can effectively make use
of the extra information at hand.
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Before we begin, however, we will note that this
method only makes sense in specific situations and
that, with a little more data, we can use much more
powerfull methods for analysis. In this example we
are assuming that it would be unreasonable to have
each person run the experiment more than once. If
this were not the case, we would apply the methods
explained in Example ?7.

Consider the data set in Table 7?7, where we have
a single experiment to compare three different meth-
ods for drying leaves after they have been rinsed per-
formed by five different people. The term Block refers

Person Applying Treatment

(Block)
Treatment 1 2 3 4 5
Control 950 887 897 &850 975
Blotted 87 1,189 918 968 909
Air Current 917 1,072 975 930 954

Table 3.13.3: Study of drying methods (measured in
seconds till try) Source: Plagiarized from Steel, Torrie and
Dickey, [?]. Data from Tucker et al.

to how randomization was used to set up the ex-
periemental design. Here we are considering each per-
son to represent a block and that within each block,
the order in which the different drying methods is ap-
plied is randomized. That is to say, Person (Block)
#1 may have used the blotting method first, then
the control method and then the air current method.
Person (Block) #2 may have started with the con-
trol method, then used the air current method and
then the blotting method. This randomization within
blocks is important to make sure that bias is not in-
troduced to the data by where a treatment is applied.
It could be that if one treatment was always done last,
then it could have a bias due to the student wanting
to get done quickly and go home for the evening.

For the data in Table ??, the model is:

y = Biby + Babz + Babs + Babs + Psbs
+ Bet1 + Brta + Bsts,

where by, by, b3, by, and b5, are indicator variables
(dummy variables) for which block the sample came
from and ¢1, t5 and ¢3 are indicator variables for which
treatment was applied to the sample. Thus, it would

make sense for Y and X to be:

950
857
917
887

1,189

1,072
897
918
975
850
968
930
975
909
954

>

I
OO OO OO0 OO OO O = =
SO OO OO OO HKFHEFHOOO
OO OO OOHEHREFOODODOOO
S OO HKFHEF MHFOOOOOOOoOoOo
_H HEHHEF OOOOOOOoOOOoOo oo
O OHH OO HOOROO OO M
O HF OO HFHFOOFRFOOFOORFEO
H OO R OOHHROOF,FROOHFHOO

and while Y is fine, X is a singular?* matrix and we
will not be able to invert X’X. A common solution
to this problem is to use tricks that are often ap-
plied to traditional ANOVA models (ANOVA models
that contain a general location parameter or overall
mean and the remaining parameters are deviations
from that mean) to reparameterize 3.

24This can be seen by first adding together the first five
columns in X, which will give you a vector of 1s. Adding the
last three columns of X together also gives you a vector of
1s. Thus, adding the first five columns and subtracting the
last three columns will result in a vector of Os, satisfying the
definition of a singular matrix.
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THE MAIN IDEA - Reparameterization:

When the design matrix, X, is singular, than
you will need to reformulate the parameter vec-
tor, B, in order to make X nonsingular. The repa-
rameterization should be such that you can reduce
the number of columns in X to a reasonable num-
ber. It is important, however, that the new X be
of full rank in order to prevent overestimation of
the error. That is, by estimating a less than full
rank model, the residual variation is contaminated
by the variations contributed by the unestimated
parameters. Full rank means, in a rough sense,
that the matrix has as many columns as is possi-
ble while remaining non-singular.

It should also be noted that the need to repa-
rameterize should be a signal that you are making
potentially unreasonable assumptions about the
data. In this example, we only have one mea-
surement per Person/Treatment combination and
thus, can not estimate the error within these com-
binations. This lack of data is what forces us to
reparameterize and assume that this error is in-
significant.

In order to reparameterize 3, we will consider there
to be a common mean for all of the data, x4 and that
the effects of different blocks and treatments rep-
resent deviations from this mean. Thus, each data
point y; ; = p+ Ab; ; + At; ;. It is also important to
note that due to Equation ?? (where we show that
our estimates in (3 are unbiased), the sum of the block
variations and the sum of the treatment variations
are equal to zero and that any particular block vari-
ation or treatment variation can be derived from the
others. That is to say,

5
ZAbi =0,

(3.13.22)
and thus,

Abs = —Ab; — Aby — Abg — Aby,
and

3
ZAtiZO

Aty + Aty + Atz =0
Aty = —At; — Ats.

(3.13.23)

Since we can derive both Aby and Ats from the other
deviations, we do not need to estimate values for them

and as such, we can omit them from 8. By adding f_test
p and removing Abs and Ats, B has one fewer row p_value
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than before and as a result, we can remove a column
from X and it will become non-singular. Thus,

o
Aby
Ab,
Abs
Aby
Aty
Ata
Ats

and design matrix then becomes

1 1 0 0 0 1 O
1 1 0 0 0 0 1
1 1 0 0 0 -1 -1
1 0 1 0 O 1 0
1 0 1 0o O o0 1
1 0 1 0 0 -1 -1
1 0 0 1 o0 1 0
X=|1 0 0 1 o0 0 1
1 0 0 1 0 -1 -1
1 0 0 0 1 1 0
1 0 0 0o 1 o0 1
1 0 0 0 1 -1 -1
1 -1 -1 -1 -1 1 0
1 -1 -1 -1 -1 0 1
|1 -1 -1 -1 -1 -1 -1 |
To test the hypothesis that there is no difference

in the treatments we want to know if the treatment
deviations are all zero. We can create a contrast ma-
trix to directly test to see if At; and Aty are zero and
if they are, by Equation ??, we can infer that Ats is
also zero. Thus,

C= 00 0 0 O01O0
{0 0 0000 1]
Using Octave we get:

> general_linear (x, y, c);

beta

949.
-41.

99
-19.
-33.
-38.

18.

867
867
.467
867
867
067
333

= 0.82474
0.47244



and since the p-value is greater than 0.05, we will
conclude that there is no difference in the three treat-
ments. It is worth noting that if we had ignored
the blocks and just used regular ANOVA, than the f-
statistic would have been 0.71 and the p-value would
have been 0.5128, demonstrating that by not ignor-
ing the blocks, we have increased the precision of our
test, even though we would have come to the same
conclusion.

If we wanted to test the hypothesis that there was
no difference in the different blocks (in this case this
would mean that each person applied the treatment
in more or less the same way), than we would have to
test to see if the block deviations were all zero. Using
the same logic used to create the contrast matrix for
the treatment hypothesis we have:

o O OO
SO O
SO =O
O = OO
= o oo
(v en B e B @)
(v en B en B @)

Using Octave to calculate an F-statistic and a p-
value, we get:

general_linear (x, y, c);
beta

949
-41

99
-19

.867
.867
.467
.867
-33.867
-38.067

18.333

1.5022
0.28882

f_test
p_value

and once again, we would fail to reject our hypothesis
and conclude that there is no significant difference
between the blocks.

At this point it is worth noting that if we had more
than one measurement per person/drying method
combination, then we would not have had to do the
reparameterization. With only one measurement per
combination, we are forced to assume that there is
no interaction between the person and the drying
method. With more measurements, we do not have
to make this assumption and we would have treated
the data as we would a 5x3 factorial experiment.
How this is done is shown in Examples 7?7, 77 and ?7.
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THE MAIN IDEA - Block Designs:

Any design that includes blocking also includes
assumptions that some of the potential interac-
tions do not exist. In Example ??, it could be
that some of the students had a lot of experience
with one of the drying methods. By using block-
ing, we are simply assuming that this can not be
the case. Thus, if at all possible, you must try to
obtain more than one measurement per combina-
tion of factors.

Example 3.13.5.6 (2x2 Factorial)

Age
Maternal Diet Adolescent Mature

5 4 6 7
0% 3 4 5 8

2 4
18 19 6 9
35% 14 12 5 9

15 3

Table 3.13.4: Study of mouse learning times, test-
ing both how maternal diet (calories derived from
ethanol) and age might effect how many times a
mouse repeats a test before passing. Source: Plagia-
rized from M. Plonsky. Analysis of Variance - Two Way
http://www.uwsp.edu/psych/stat/13/anova-2w.htm

Age
Maternal Diet Adolescent Mature
0% 3.6 6
35% 15.6 6.4

Table 3.13.5: Average value for each factor combina-
tion.

Sometimes you are interested in testing more than
one variable at a time. For example, you might want
to do this to determine if there are any interactions
between two drugs at different dosages. Such an in-
teraction might prevent the two drugs from being as
effective together as they would be taken alone. A
doctor might find this information helpful when de-
ciding how to make prescriptions. In this case, you
would need to use some type of factorial method
to test your hypothesis. In this case, the the dif-
ferent drugs would be called Factors and the differ-
ent dosages of each drug would be called Levels. If
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Figure 3.13.3: A plot of the averages for the combinations
of factors. That the lines are not parallel indicates that there
is an interaction between the two factors.

we are interested in only two different dosages per
drug, then we would use what is called a 2x2 facto-
rial method (2x2 indicating that there is a total of 4
different drug/dosage combinations). In general, fac-
torial method can be used to determine if there is any
interactions between the two factors and if there are
none, it can then determine the significance of the
effects of the different levels of the factors.

In a completely randomized experiement with mul-
tiple factors, there is no attempt to impose any type
of blocking structure. That is to say, the random-
ization occurs at the top most level of organization
(i.e. we randomly select a level from one factor and
apply it with a randomly selected level from another
factor). In a blocking design, we first designate the
blocks and only randomize within the blocks.

The general model used for a 2x2 factorial method

¥ = P1(a1b1); + Ba2(a1ba); + B3(azbi); + Balazbsa);,

where (a,by); are indicator variables that show that
the measured value came from a particular combina-
tion of factors.

Given the data in Table ??, we can apply the 2x2
factorial method to determine if there is any interac-
tion between a mouse’s age and how much prenatal
ethanol its mother consumed when determining how
quickly it can learn something new. We might spec-
ulate that older mice are going to be slow learners
regardless of their prenatal environment, where as
young mice might be heavily influenced this factor.
We can further validate this hunch by creating what
is called an interaction plot, Figure ??, by plotting
the average responses for the adolescent and mature
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mice given the two different conditions (data from
Table 7?). In this case we see the two lines are not
parallel and this indicates that the age of the mouse
potentially changes the size of the effect that the pre-
natal environment has on its ability to learn.2’

Since the model we will be using is a linear model,
we can apply our general method for hypothesis test-
ing. Thus, the matrices for Y and X are:

Ut 3O N B Wk Ut
1

SO O OO HMEMEMEMEFODOODODODODODODOO O
H HEHREEF R OOOOOOOOoCOoOOoOoooOoco0o o

SO OO O OO OO0 OHFHHFHH-
SO OO OO OO OO0 HMFEHFEFREMEFOODOOO

To test if there is interaction effects between the
factors, and Figure ?? indicates that this is probably
the case, we want to test if the slopes in the plot are
equal. That is, (81 —B2) — (B3 —B4) = f1 — P2 — B3+

B4 = 0 and thus, we define the contrast matrix,
c=[1 -1 -1 1],
and our Octave program gives us the results:

> general_linear (x, y, c);
beta

3.6000
15.6000
6.0000
6.4000

f_test = 35.598
p_value 1.9738e-05
t_test = 5.9664

25A large number of different interaction plots, as well as
their potential interpretations is given in Appendix 77.
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Figure 3.13.4: A plot of the averages for the combinations
of factors. To test for interactions, we would need to deter-
mine that the line segments between each level of factor A are
parallel.

The tiny p-value confirms the intuition gained from
Figure 77. ||

Example 3.13.5.7 (NxM Factorial)

If there are more than two levels per factor, then the
only thing that changes is the number of columns in
the design matrix, to account for the larger number of
possible combinations between factors, and the num-
ber of rows in the contrast matrix.

For example, if you were to do a 3x2 factorial, X
would have 6 columns and in order to test for inter-
actions, C would require 2 rows. The need for the
extra row in C is illustrated in Figure ??, where the
two groups of line segments would need to be tested
to see if their slopes are equal. ||

Example 3.13.5.8 (2x2x2 Factorial)

By adding an additional factor, you add an extra di-
mension to types of interactions that can take place.
Instead of a two dimensional table to describe the
combinations of different levels of different factors,
you now need a three dimensional cube. Additional
factors require additional dimensions. Fortunately all
of these extra dimensions can be represented by mul-
tiple two dimensional tables.

Consider the data in Table ??. If we let Body Fat
to be factor A, Gender to be factor B and Smoking
History to be factor C, we can represent this data
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with the model:

Yi = Pi(aibier)s + Pa(arbica)i + Ba(arbacy)i
+ Ba(a1bacz)i + Ps(azbici); + Be(azbica);
+ Br(agbac); + Bs(azbaca)s,

where (a;bjck); is 1 if the data came from that com-
bination of factor levels.

Smoking History

Gender Light Heavy
24.1 17.6
Male 29.2 18.8
Low Body Fat 24.6 23.2
20.0 14.8
Female 21.9 10.3
17.6 11.3

Smoking History

Gender Light Heavy

14.6 14.9

. Male 15.3 204
High Body Fat 12.3 12.8
16.1 10.1

Female 9.3 14.4
10.8 6.1

Table 3.13.6: Study of how Body Fat, Smoking and
Gender effect how long it takes to reach fatigue on an
exercise bike. Source: Plagiarized from Neter et al., [?]

Smoking History

Gender Light Heavy

Low Body Fat —<r =55 067 19.867
Female 19.833 12.133

Smoking History

. Gender Light Heavy

High Body Fat —r 177067 16.033
Female 12.067 10.2

Table 3.13.7: Average value for each Factor/Level
combination.

Now that we have the model, the question becomes,
how do we test hypotheses about it. Can we use it
to determine if Body Fat has an effect of its own on
how quickly people get fatigued or is it confounded
with the other factors? What about smoking? Do
differences in how quickly someone is fatigued depend



on all three factors working simultaneously? With
carefully formulated contrast matrices we can answer
all of these questions.

Before we start, however, it is important to un-
derstand that you need to begin by looking for the
highest order interactions (in this case, the poten-
tial three way interaction between the three factors)
before testing hypotheses about lower order interac-
tions, which, in turn, need to be investigated before
you look at whether or not any particular factor has
a main effect (operates on its own). This is because
if there are higher order interactions involving the
specific factor you are interested in testing for main
effects, than the data set is not usable for the kind of
hypothesis you have in mind. Despite this, we begin
by formulating the contrast matrices to test for main
effects. The reason we do this, however, is that once
we have the matrices needed to test for main effects,
we can use them to derive all of the other contrast
matrices required test for any possible higher order
interactions. Thus, even though we start by creating
the contrasts to test for main effects, we do not use
them individually until the very end of the analysis
if we use them at all.

Consider the data from Table ?? as it is plotted in
Figure ?7. If we assumed that there were no higher
order interactions, we could test to determine if Body
Fat has a main effect by testing to see if the slopes of
the lines between Low and High were zero. We can
do this by the usual way by calculating the slopes
and then determining if they are significantly differ-
ent from zero or not. Thus, the contrast matrix for
the hypothesis that there is no main effect (the slopes
are zero) is:

C=[-1 -1 -1 -1 1 1 1 1].

Similarly, to test for whether or not Gender has
a main effect, we would want to test for whether or
not the slopes in Figure ?? were zero or not. The
hypothesis that there is no main effect is encoded
into the contrast matrix:

c=[-1 -111 -1 -1 1 1].

Figure ?? implies that in order to test for a main
effect from Smoking, we must define the contrast ma-
trix as follows:

c=[-11-11 -11 -1 1].

Now, all that we need to do to test hypothesis
about any higher order interactions is multiply, col-
umn by column, the contrast matrices associated
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with each factor in the interaction. For example, to
test for an interaction between Gender and Smoking,
we create the new contrast matrix

[ -1 -1 1 1 -1 -1 1 1 ]
X

cC=[ -1 1 -11 -1 1 -1 1]

[ 1 -1 -1 1 1 -1 -1 1 ]

This contrast matrix is equivalent to testing whether
the slopes of the lines within each graph in Figure 77
are equal.

To test a hypothesis about a three way interaction
between Body Fat, Gender and Smoking, we simply
multiply the columns of all three main effect matrices
together. This contrast matrix is

[ -1 -1 -1 -1 1 1 1 1 ]
X

[ -1 -1 1 1 -1 -1 1 1 ]
C= X

[ -1 1 -1 1 -1 1 -1 1 ]

[ -1 1 1 -1 1 -1 -1 1 ]

Intuitively, one can also imagine that this contrast
matrix tests to determine if the slopes between the
graphs in Figure 7?7 are equal (see Figure 77).

As before, to test our hypotheses we create Y and
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Figure 3.13.8: The two graphs in Figure 77 can be thought
of as forming the front and back sides of a cube To test for a
two way interaction between Gender and Smoking, you simply
need to verify that the two lines within the front and back
sides are parallel (1). To determine if there is a three way
interaction between Gender, Smoking and Body Fat, you have
to verify that the lines drawn between the front and the back
are parallel (2). The lines traveling between the front and
the back effectively traverse all three dimensions of the space
defined by the three factors. The lines within the front and

6 4back sides only make use of two dimensions.
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Using our contrast matrix for testing for three way
interactions between Body Fat, Gender and Smoking,

cC=[-111 -11 -1 -1 1],
we can use our Octave program and the output is:

> general_linear(x, y, c);
beta =

25.967
19.867
19.833
12.133
14.067
16.033
12.067
10.200

f_test = 0.20036
p_value = 0.66043
t_test = 0.44761

Since the p-value is much larger than 0.05, we will fail
to reject the hypothesis that there is no three way in-
teraction between Body Fat, Gender and Smoking.
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That is to say, there is no three way interaction be-
tween the three factors in the study. Thus, we are
free to test hypotheses about any possible two way
interactions that might be present.

Moving on, we now test for interactions between
Gender and Smoking. As described above, we define
the contrast matrix:

C=[1 -1 -1 11 -1 -1 1],
and octave gives us:

> general_linear(x, y, c);
beta =

25.967
19.867
19.833
12.133
14.067
16.033
12.067
10.200

1.1859
0.29230
1.0890

f_test =
p_value =
t_test =

leaving us to conclude that, since the p-value is
greater than 0.05, there are no interactions between
Gender and Smoking.

To test if there are interactions between Body Fat
and Smoking,

c=[1 -11 -1 -1 1 -1 1],
and octave gives us:

> general_linear(x, y, c);
beta =

25.967
19.867
19.833
12.133
14.067
16.033
12.067
10.200

f_test = 7.7612
p-value = 0.013221
t_test = 2.7859



so that we would reject the hypothesis that there is
no interaction between Body Fat and Smoking.

To test for interactions between Gender and Body
Fat,

cC=[11 -1 -1 -1 -1 1 1],
and octave gives us:

> general_linear(x, y, c);
beta =

25.967
19.867
19.833
12.133
14.067
16.033
12.067
10.200

f_test = 1.4622
p_value = 0.24414
t_test = 1.2092

and we would fail to reject the hypothesis that there
is no interaction between Gender and Body Fat.

Finally, since we have determined that Gender is
the only factor that is not in a two interaction, we
can determine if has a main effect. To test if the
hypothesis is that there is no main effect, the contrast
matrix is, as defined above,

c=[-1 -111 -1 -1 1 1],
and octave gives us:

> general_linear(x, y, c);
beta =

25.967
19.867
19.833
12.133
14.067
16.033
12.067
10.200

f_test = 18.915
p_value = 0.00049705
t_test = 4.3492

The small p-value tells us to reject our hypothesis
and conclude that there is a main effect for Gender.

Example 3.13.5.9 (Blocked 2x3 Factorial)

It is possible to combine blocking with the factorial
method for analyzing data. Using blocking implies
that you are assuming that some of the potential in-
teractions do not exist while leaving room for the
possibility with other interactions.

Consider the data in Table ?7. Here we have two
factors, Major and Grade, that have been separated
into different blocks defined by Teacher (the mea-
sured value is Score). Notice that just like in Exam-
ple 7?7, we only have one measurement for each cell in
each block. This prevents us from using the full mod-
els from Examples 7?7 and ?? that allowed us to test
for all possible interactions. Instead, we are forced to
assume that there is no three way interaction between
Teacher, Major and Grade. However, since we have
multiple measurements for each Major/Grade combi-
nation, we can test for two way interactions between
these two factors.

Teacher
(Block)
Grade
#1 Major Jr. Sr. Gr
CS 80 80 80
MA 8 90 96
Grade
9 Major Jr. Sr. Gr
CS 75 80 84
MA 80 88 97
Grade
#3 Major Jr. Sr. Gr

CS 7 80 8

MA 75 80 100

Table 3.13.8: Data for a 2x3 Factorial with Blocking.
Teacher is used for blocking and Major and Grade are
the two factors. The measured value is Score. Source:
Plagiarized from Tanya Balan.

Given the restrictions of the data, the model is
thus,

y = Bit1 + Bata + Bsts + Bamy + Bsmy
+ 8691 + BT792 + B8g3 + Bo(m1g1)
+ Bo(m1ga) + Bo(mag1) + Bo(mags),
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where ¢;, m; and g are the indicator variables for
Teacher, Major and Grade, respectively, and (m;gx)
are the indicator variables for the different types of
two way interactions.

As with our previous experience with blocking in
Example ??, this equation will lead to a singular de-
sign matrix and thus we must reparameterize in much
the same way we did before. The only significant
difference is how we rewrite the interaction terms.
Here, we will use the methods we learned in Example
??, where we built the interaction contrasts from the
main effect contrasts. Instead of multiplying each col-
umn in contrast matrices, we will multiply the rows
that determine which specific combination of Major
and Grade a particular score is associated with to cre-
ate the columns that specify the interaction. Thus,
the design matrix is:

1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1
1 1 0 1 -1 -1 -1 -1
1 1 0 -1 1 0 -1 0
1 1 0 -1 0 1 0 -1
1 1 0 -1 -1 -1 1 1
1 0 1 1 1 0 1 0
1 0 1 1 0 1 0 1
1 0 1 1 -1 -1 -1 -1

=11 0 11 1 0 -1 of
1 0 1 -1 0 1 0 -1
1 0 1 -1 -1 -1 1 1
1 -1 -1 1 1 0 1 0
1 -1 -1 1 0 1 0 1
1 -1 -1 1 -1 -1 -1 -1
1 -1 -1 -1 1 0 -1 0
1 -1 -1 -1 0 1 0 -1

1 -1 -1 -1 -1 -1 1 1|

where Column 1 is the overall mean, yu, the Columns
2-3 characterize which Teacher, or block, the data
comes from, Column 4 specifies which Major the data
comes from, Columns 5-6 determines which Grade
the data comes from and Columns 7-8, the product
of Column 4 and Columns 5-6, specifies the (Major
x Grade) interaction.

As with the factorial method, we need to evaluate
the presence of interaction before we determine the
effects of the individual factors. To do this, we make
the null hypothesis that there is no interaction. This
is equivalent to assuming the parameters associated
with Columns 7 and 8 are both equal to zero. The

contrast matrix is thus,

0010
0 00 1]

o oo

C_OOO

0
0
Using our Octave program, we test our hypothesis:

> general_linear (x, y, c);
beta =

.16667
1.00000
.16667
L27778
.83333
.33333
2.61111
0.44444

5.3515
0.026292

f_test =
p_value =

and, due to the small p-value, reject it.

Since we have concluded that there is indeed inter-
actions between Major and Grade, we can end our
inquiry here. ||

Example 3.13.5.10 (Split-plot Design)

Split-plot designs are simply designs that incorporate
multiple levels of blocking, and thus, only attempt to
model a subset of the potential sources of variation.
The more “split” you see in the name, like split-split-
plot, of the design, the more levels of blocking there
are in it. In this case, where we are just demonstrat-
ing split-plot, we let one factor determining the block-
ing at the top level, these blocks are then divided into
two sub-blocks, or plots, with the levels of a second
factor applied to each sub-block. These sub-blocks
are then divided into sub-sub-blocks and the levels of
a third factor are randomly distributed among these
units. This is illustrated in Figure ??. Conceptually,
however, they do offer anything we have not seen be-
fore.

Consider the data in Table ??. The table alone is
enough to convince us that any hope we might have
to model potential three way interactions is a lost
cause. The fact that there is only one measurement
per cell rules this out by not giving us enough degrees
of freedom to model both a three way interaction and
estimate the error. We are forced to simply assume
that this type of interaction can not exist.

On the other hand, we can model a two way in-
teraction between Field and Variety because we have
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1.
Al A2
2.
Al A2
B2 Bl Bl B2
3.
Al A2
Cc2 C1l C1 C1
C1l C2 Cc2 C2
B2 Bl Bl B2

Figure 3.13.9: Assume there are three Factors, A, B and
C, each with 2 Levels. First, (1) we divide the levels of A
between two blocks, randomly selecting which level goes with
which block. Second, (2) we divide each block into two sub-
blocks and divide the levels of B between them by randomly
selecting which level goes with which sub-block. Lastly, (3)
these sub-blocks are divided and the levels of C are randomly
distributed among these subunits.
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Field #1

Row Spacing

Variety 18 24 30 36 42
oM 33.6 31.1 33.0 284 314
B 28.0 23.7 235 250 25.7
Field #2
Row Spacing
Variety 18 24 30 36 42
oM 37.1 345 295 299 283
B 255 262 268 253 232
Field #3
Row Spacing
Variety 18 24 30 36 42
oM 34.1 30.5 29.2 31.6 289
B 28.3 270 249 256 234
Field #4
Row Spacing
Variety 18 24 30 36 42
oM 34.6 30.5 29.2 31.6 289
B 294 258 233 264 256
Field #5
Row Spacing
Variety 18 24 30 36 42
oM 35.4 30.7 30.7 28.1 185
B 27.3 268 214 246 245
Field #6
Row Spacing
Variety 18 24 30 36 42
oM 36.1 30.3 279 26.9 334
B 28.3 238 220 245 229

Table 3.13.9: Yield, in bushels per acre. There were
six different fields (Blocks) and these blocks were di-
vided into two sub-blocks, each sub-block receiving
one of two different varieties of of soybean. Within
each sub-block, five different row spacings were ap-
plied to the rows of soybeans.Source: Plagiarized from
Steel, Torrie and Dickey, [?]. Data from J. W. Lambert, Uni-
versity of Minnesota



multiple measurements per level of Variety in each
Field. We can also model a two way interaction be-
tween Variety and Spacing because, across the dif-
ferent Fields, we can come up with several measure-
ments for each Variety/Spacing combination. Thus,
the model is:

y = B;Field + f;Variety 4+ (Spacing
+ Bi(Field x Variety) + 3,,(Variety x Spacing).

The more common form of this model is:

y = B;Field + B;Variety + §;(Field x Variety)
+ BrSpacing + B, (Variety x Spacing).

Since we do not have enough degrees of freedom to
estimate all of the parameters in a full model (i.e. we
are leaving out the three way interaction term) then
we will have to reparameterize the design matrix in
the same way we did in Example ??. This gives us
a design matrix with sixty rows and twenty columns
(thank goodness someone has already gone ahead and
written a computer program to generate these for us,
[?]). Since this is quite large, I will leave it to your
imagination, however, a small bit of it can be found
in Appendix ?7.

Analysis of the data follows that of any model that
contains interaction terms. Start by analyzing those
to determine if there is interaction. If not, then test
for main effects. If there is, then, you have done your
best.

The contrast matrix for testing for interaction be-
tween Variety and Spacing can be found in Appendix
?? and the result of our test is:

> general_linear (x, y, c);
beta

28.111667
0.228333
0.518333

.238333

.828333

.311667

.821667

.338333

.408333

.311667

.018333

.941667

.363333

.480000

-1.203333
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-0.728333
0.853333
0.220000
0.436667

-0.671667

1.3051
0.28457

f_test
p_value

and the large p-value lets us conclude that there is
no interaction between Variety and Spacing.

Since spacing is not tied up in another interac-
tion term, like Variety, we can go ahead and test for
whether or not it has a main effect. This contrast can
be found in Appendix ?? and octave tells us:

> general_linear (x, y, c);
beta

28.111667
0.228333
0.518333
0.238333
0.828333

.311667

.821667

.338333

.408333

.311667

.018333

.941667

.363333

.480000

.203333

.728333

.853333

.220000

.436667

.671667

O O N =

10.567
6.1454e-06

f_test
p-value

Such a small p-value (far less than 0.05) allows us to
conclude that Spacing does indeed have a main effect
on the yield.

We will now test to see if the interaction term
Field x Variety is significant. The contrast matrix for
this can be found in Appendix ??. The results of our
test are:

> general_linear (x, y, c);
beta



N
oo}

.111667
.228333
.518333
.238333
.828333
.311667
.821667
.338333
.408333
.311667
.018333
.941667
.363333
.480000
.203333
.728333
.853333
.220000
.436667
.671667

OO NP OO OO

0.61686
0.68760

f_test
p_value

and once again, since the p-value is so large, we will
fail to reject the hypothesis that the interaction term
is insignificant.

Now that we have established that both Field and
Variety are free of any interaction, we can test to see
if they have any main effects. As we might expect
Field ends up not having a main effect, but Variety
does.

It is worth noting that often times statisticians will
modify the formula used to calculate the F-statistic
when they are testing for main effects for factors
whose levels are not randomly applied within the
sub-blocks. Instead of using the Mean Square Er-
ror (the estimation for the overall error in the model)
in the denominator, they will use the mean square
of BlockxPlot interaction term. Doing so has the
potential to increase the power of this test. ||

Example 3.13.5.11 (ANCOVA)

Analysis of covariance (ANCOVA) is very similar to
ANOVA in that the models contain indicator vari-
ables for the various treatments. The differences
comes from the fact that ANCOVA models also con-
tain variables that represent continuous data, like
weight or height. These continuous variables are
called covariates because, even though they are not
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controlled by the experimenter, they are expected to
have an influence on the response to the treatments.
You can imagine how heavy and light people might
have different response to different “treatments” of
alcohol.

Oftentimes there are possible interactions between
the covariates and the treatments. For example, if
we were trying to determine if two different brands
of fertilizer resulted in the same crop yield or not
and we were measuring insect infestation as our co-
variate. We would expect that the greater the infes-
tation, the less crop yield. Beyond this, it could be
that one of the fertilizers contained something that
insects enjoyed eating and thus, would be more sus-
ceptible more substantial infestations. It would then
be difficult to tell if low crop yield for this fertilizer
would be result of the fertilizer simply not working or
due to the fact that the crop was eaten by the insects.

Thus, or analysis of covariance begins much the
same way as it did for the blocking designs and the
factorial data. We start by testing for interactions be-
tween the covariate and treatments. Using our exam-
ple of two fertilizers and insect infestation, the model
that leaves interaction as a possibility is,

y = B Fertilizer 4 + BoFertilizerpg
+ B3Infestationy + B4Infestationp,

where Fertilizer A and B are dummy 0/1 indicator
variables exactly like the ANOVA model and Infesta-
tion A and B are infestation values measured for the
different treatments (infestation is scored from 0 to
10, with 0 being no infestation and 10 being the most
infestation).

Given 8 measurements for each treatment, the re-



sponse vector and the design matrix are:2¢
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We can test for interaction by testing whether the
Infestation slopes are the same for the different fer-
tilizers. That is,

c=[001 -1],

and our general linear models program give us the
results:

> general_linear (x, y, c);
beta

17.86079
14.48320
-0.67178
-0.59096

f_test = 0.56192
p_value = 0.46793
t_test = 0.74961

Here the p-value is much larger than our 0.05 cut off,
so that we will fail to reject our hypothesis that the
slopes for the covariate given different treatments are
different and thus, we can assume that there is no
interaction between Infestation and Fertilizer.

Since we can ignore interaction, we can use a sim-
pler model (one that leaves out the possibility for in-
teraction) to test whether or not the fertilizers have
the same effect on crop yield. This model simply

26The data given here were stolen
from David Dickey and Jimmy Joi’s web
page: http://www.stat.ncsu.edu/~st512_info/

dickey/crsnotes/notes_5.htm.
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lumps the two Infestation variables into one. We can
do this because we failed to detect any difference be-
tween the two variables in the more complex model.
Thus, our new model is:

y = P Fertilizer , + By Fertilizerg + B3Infestation,

and the design matrix becomes:
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The contrast matrix for determining if there is a dif-
ference between the treatments is

C=[1 -1 0],
and our program gives us the results:

> general_linear (x, y, c);

beta =

14.48603

11.51397

-0.62940
f_test = 60.644
p_value = 2.9992e-06

t_test = 7.7874

Such a small p-value causes us to reject the hypothesis
that both Fertilizer treatments are the same.
NOTE: This second test, where we have lumped
the covariate into a single variable for all of the treat-
ments in the model and are testing for differences be-
tween the treatments, is equivalent to conducting the
test under the adjusted treatment means hypothesis
that is sometimes mentioned in other statistics texts.



Example 3.13.5.12 (Categorical Data)

Ever since 1969, linear models have been used to an-
alyze categorical data [?]. ||

3.13.6 Linear Models with
Multiple Dependent Variables

Suppose the observations, or dependent variables, y;s,
are vectors with ¢ correlated characteristics instead
of single variables, as would be the case of multiple
observations made on the same individual. A random
sample of n of these vectors could be arranged in a
rectangular array to form an n x ¢ matrix Y, where
the first row of Y is the vector of characteristics ob-
served on the first individual, the second row is the
vector observed on the second individual and so on.

Assuming that the g-dimensional observation vec-
tor has a multivariate normal distribution, and that
the n observations vectors are independent, we can
extend the univariate model developed in Sections ??
through?? to encompass the ¢ correlated variables.
The model now appears as:

Y = X3 +¢, (3.13.24)
which looks exactly like the univariate general linear
model in Equation ??, except in this case, Y is an
n X ¢ matrix and 8 is an m X ¢ matrix. The matrix
X, the design matrix, is the same matrix of known
constants that appeared in the univariate model. The
hypothesis can be generalized to:

CpU =20, (3.13.25)
where C is an ¢ x p matrix U is a ¢ X u matrix, and 6
is an ¢t x u matrix and C and U are arbitrary matrices
designed to yield the appropriate hypothesis.

Example 3.13.6.1 (Multiple Regression)

A series of animals were studied where cardiac output
and mean blood pressure were measured while heart
rate and respiration were varied. The data from this
study can be found in Appendix ??. We will model
with data with the formula:

(Yi,1,Yi2) = Bo + i1 By + i2Bs (3.13.26)
where
yi,1 = mean blood pressure of the i-th animal,
yi,2 = cardiac output of the i-th animal,
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x;,1 = respiration rate of the i-th animal,

x;,2 = heart rate of the i-th animal.

Thus,
Y1 Y12 1 211 712
Y= : : , X=1: )
Yn,1  Yn,2 1 Tn,1 Tn,2
and
Boa  Bo2
B=| Bi1 B2
,Bn,l ﬂn,2

Some questions that we might ask about this data
are

1. Does respiration rate affect cardiac output and

mean blood pressure?

Does heart rate affect cardiac output and mean
blood pressure?

To answer the first question, we test the hypothe-
sis that the respiration rate regression coefficients are
Zero:

Ho:B11=012=0.

We can convert this hypothesis into matrix form us-
ing Equation ?? by defining C and U such that
1
C:[OIO]andU:{O ],

which yields:

Boa  Poyz 1 0

[0 1 0]] Bix Bro [0 1]=[0 0]
Bn,l /Bn,2
[ Bia 51,2][(1)(1)]2[0 0]

[ﬂ1,1 131,2]:[0 0]

To answer the second question, we test the hypoth-
esis that the heart rate coefficients are zero:

Hp: B2,1 = f2,2 =0,

for which

c=[0 0 1]andU:{ (1]]

1
0



Since, in general, these two tests will not be inde-
pendent, we should make them simultaneously. To
do this, let
010 1 0
C—[ Ol]andU—[Ol].
Using Equation ??, this yields:
Bia Big 0 0
CpU = ’ ' = .

ﬂ [ ﬂn,l IBn,2 0 0
We are now ready to use the multivariable version of
the general linear models program found in Appendix
I
Example 3.13.6.2 (Hotelling T?)
Hotelling T? tests allow us to run simultaneous paired
t-tests on ¢ pairs of characteristics. Consider, in this
case, that we have measured mean blood flow, mean
blood pressure, cerebro-vascular resistance in a series
of experimental subjects both before and after the
administration of epinephrine. Using a Hotelling T?
we can answer the question: Did the drug change the

blood flow, pressure and resistance significantly?
The model for this experiment is thus

Y =p6X
where
yi,1 = blood flow before
yi,2 = blood pressure before
Yi,3 = resistance before
yi,1 = blood flow after
Yi,2 = blood pressure after

yi,3 = resistance after

—

,8 = [ ,be pr ﬂrb Bfa ,Bpa ,Bra ] and ,

1
where the subscript ’'b’ refers to a measurement taken
before the treatment and the subscript ’a’ refers to a
measurement, taken after.

To answer our question about whether the drug
changed blood flow, pressure and resistance, we ask
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if the parameters for before and after measurements
have changed. Thus, we form the hypothesis:

Ho : B — Bra =0
/pr_ﬂpa:()
/Brb_ﬂrazo

This leads us to define C and U as:

C=[1]and U=

SO OO
_H OO MROO

O = OO ~O

so that
CBU=[0 0 0],
or, in other words,

[ (Bot — Bva) (Bot — Bpa)  (Bet — Pra) |

=[0 0 0]
The output from our program is... ||

Example 3.13.6.3 (Multivariate ANOVA)

A series of twenty-four animals were studied by divid-
ing them into six groups according to their diet and
sex. The cardiac output, heart rate, and initial body
weight of the animals were measured. Since body
weight was thought to affect the level of response, it
is considered a covariate. Cardiac output and heart
rate are both dependent variables. Our model is thus,

(Yi,1,Yi2) = i1 1 + X202 + 24,303
+ ;401 + 25582 + %6083 + Ties

where
1 if animal received treatment ¢,
oy
“*10 if animal did not receive treatment t,
and

2;,c = initial body weight.

To test if cardiac output and heart rate vary with
sex, we construct the contrast matrices:

cC=[111 -1 -1 =1 0]

o

and

1
v-|,



Thus, our hypothesis is?:
(Bra + B2+ B31) — (Bar + Bs,1 + Be,1)

(Br,2 + P22+ B3,2) — (Ba2 + Bs.2 + Bs,2) =0

3.13.7 Conclusion

In conclusion, when viewing linear models from a ma-
trix perspective, you build the model to mimic the
physics or physiology that you believe to be opera-
tional - including terms that dominate the processes
- and you’re not stuck with a recipe book of 1-way
ANOVA, ANCOVA etc. The matrix approach to lin-
ear modeling simply suppresses the mechanics of the
computational process and lets you focus on the sci-
ence - the model of what you think is going on (the
process).

27See Appendix ?? for the derivation
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Chapter 4
Basic Electronics

4.1 Symbols and Abbreviations

Quantity | Symbol | Unit | Abbreviation
Current I Ampere A
Voltage EorV Volt A%
Resistance R Ohm Q
Conductance G Siemens S
Power P Watt W
Capacitance C Farad F
Inductance L Henry H
Reactance X Ohm Q
Impedance Z Ohm Q
Gain A

4.2 Measurement Prefixes

Prefix | Abbreviation | Meaning
tera T 1012
giga G 10°

mega, M 108
kilo K 103
milli m 103

micro U 10-6
nano n 107°
pico P 10712

4.3 Terminolgy and Definitions

1

Angular Velocity: The radians per second trav-
eled by an AC current. This is primarily a means
to express the frequency of an AC circuit in units of
radians per second instead of cycles per second.

1Most of the deffinitions in this section were plagiarized
from Tony R. Kuphaldt’s Lessons in Electric Circuits
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= 27Hz
= wHz

Angular Velocity

where w (lowercase omega) is equal to 2.
Anode: Positive.

Bel: P
_ output

B loglo anut

Capacitance: The measure of a capacitor’s ability

to store energy for a given amount of voltage drop.

Capacitors store energy in an eletric field.

When a capacitor is faced with an increasing volt-
age, it acts as a load: drawing current as it absorbs
energy (current going in the negative side and out the
positive side, like a resistor). This energy is stored in
the form of a field. As voltage increases, the field’s
force increases.

When a capacitor is faced with a decreasing volt-
age, it acts as a source: supplying current as it re-
leases stored energy (current going out the negative
side and in the positive side, like a battery).

C:d_v

dt

or d
v

’I;—Ca

where 4 is the instantaneous current through the ca-
pacitor and v is the instantaneous voltage.
Cathode: Negative.

Conductance: The inverse of resistance.

1

conductance = ——
resistance

Current: The actual movement of electrons between
two points. In a closed circuit, the current is constant



throughout and is not relative to two different points.
Current is caused by voltage.

A useful analogy is to consider a several water
reservoirs that are connected and are at different
heights. The potential energy (voltage) measured
between the highest reservoir and the lowest reser-
voir is going to be the greatest when compared to
the potential energy (voltage) measured between the
highest and second highest reservoirs or any other
combination of reservoirs. However, the amount of
water (current) flowing between each tank is going to
be constant (this is assuming that there is a means
to push water back to the highest reservoir). Even
if the pipes between tanks are different sizes (and
thus, potentially allowing more water to leave some
tanks than others), an equilibrium will be reached
before too long (assuming water is not being added
from some external source). The amount of water
flow (current) is limited by the smallest pipe because,
in the long run, it determines how quickly the other
tanks will be re-supplied with water.

Current is the rate at which electric charges move
through a conductor.
deciBel:

dB = 10log,, Foutput

input

Field Flux: The total quantity, or effect, of a field
through space. The flux of a field is roughly analo-
gous to the current in a circuit.
Field Force: The amount of “push” that a field ex-
erts over a certain distance, thus causing flux to form
in space. The force of a field is roughly analogous to
the voltage in a circuit.
Gain:

Poutput
A=—"—
Pinput

Impedance: The vector combination (summation)
of resistance and reactance in a circuit.

Inductor Reactance: Opposition to changes in cur-
rent that results in a phase shift and no dissipation
in power. A term used with inductors. A resistor op-
poses changes in current, but does not induce a phase
shift and does dissipate power (in the form of heat).

X =2nfL

where f is the frequency of the alternating current.
Joule’s Law: P = I?R (substituting Ohm’s law into
the Power equation.)

Kirchhoff’s Current Law: The algebraic sum of
all currents entering and exiting a node must equal
7€ro.
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Kirchhoff’s Voltage Law: The algebraic sum of
all voltages in a loop must equal zero.
Ohm’s Law (AC): E =IZ (All quantities should be
expressed in complex form).
Ohm’s Law (DC): E = IR.
Polarity: The +/- orientation of a voltage drop.
Power: P = IE (measured in Watts)
Rectification: Converting alternating current to di-
rect current. Rectifier circuits are usually created
with diodes.
Resistance: The measure of friction a component
presents to the flow of electrons through it. In series
circuits, the total resistance is the sum of all of the
resistors. In parallel circuits, the total resistance is
equal to

1

1 1 1
Q_1+Q_2"'+m

Qp =

Resistors: These are rated both for the amount of
resistance that they can insert into a circuit, but also
how much heat energy that they can dissipate with-
out sustaining damage. Resistance, by its nature,
causes a dissipation of energy and this most often is
in the form of heat. Resistance is measured in Ohms,
Q, and the heat energy is measured as Watts, W. You
can use the definition of power to derive the amount
of energy dissipation that will be caused by insert-
ing a resistor into a circuit and use that to determine
what kind of resistor to use.

Voltage: The amount of potential energy available
(work to be done) per unit charge to move electrons
through a conductor. Because the concept of “poten-
tial energy” is relative to the source and the desti-
nation, voltage is always expressed as a quantity be-
tween two points. Often times the voltage measured
between two points is called a “voltage drop”.

An example of voltage as potential energy is a bat-
tery that is not connected to anything. Even though
there is no flow of electrons between the negative and
the positive terminals of the battery (since neither
terminal is connected to anything), there is still a
voltage between the two poles.

Voltage is the specific work (or potential energy)
per unit charge.

Inductance: The measure of an inductor’s ability
to store energy for a given amount of current flow.
Inductors store energy in a magnetic field.

When an inductor is faced with an increasing cur-
rent, it acts as a load: dropping voltage as it absorbs
energy (negative on the current entry side and posi-
tive on the current exit side, like a resistor).



When an inductor is faced with a decreasing cur-
rent, it acts as a source: creating voltage as it releases
stored energy (positive on the current entry side and
negative on the current exit side, like a battery).

or

where 4 is the instantaneous current through the ca-
pacitor and v is the instantaneous voltage.

Thus, the faster the current is changing, the larger
amount of voltage will be dropped over the inductor.

7



Chapter 5

Basic Linear Systems

Figure 5.1.1: A simple circuit with a single resistor
and a single inductor

5.1 Resistor and Inductor:
First Order Differential
Equations

5.1.1 General Overview

An example of a simple circuit with a single resistor
and a single inductor can be seen in Figure ??. The
voltage drops of the various components and how to
analyze them is listed here:

- Voltage Drop (Ohm’s Law) for Resistors: E =
IR, where E is the voltage, measured in volts
(V), I is the current, measured in amperes (A),
and R is the resistance, measured in ohms, (2.

- Voltage Drop for Inductors: E = L%, where L

is the inductance, measured in henries (H).

- Kirchoff’s Voltage Law (total voltage is equal to
the sum of the voltage drops): E =IR+ L‘é—{.

5.1.2 DC

If R=12Q, L =4H and E = 60V, then we can solve
for I(t) using an integrating factor (as explained in
Section ?7),

dr
12 +4— =60
T
dr
3+ —=15
@
dr
331 + e3ta = 153
d
— [€*]] = 15€*

dt

/ % [€*1] = / 15¢°

eI =5e + C
I(t) =5+ Ce 3.

If 1(0) = 0, then

0=5+C
C=-5
and thus,
I(t) =5—5e%

A graph of the current can be seen in Figure 77.
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Figure 5.1.2: A graph of how the current increases to
5 amperes over time. Here £ = 60.
5.1.3 AC

If E(t) = 60sin(30t)V, then we can solve for I(¢)
using an integrating factor:

I
127 + 4% = 60 sin(30t)
I
37+ % = 155in(30t)
I
e3t3I + e3ti—t = 15e3sin(30t)

% [€*T] = 15€ sin(30¢t)
/ % [e]] = / 15¢% sin(30¢)

3t
3ty _ :
e’'] =15 [m (3 Sln(30t)
—30cos(30t)) + C
I(t) :% [sin(30t) — 10 cos(30t)] + Ce™ 3.

If I(0) = 0, then

50
_ 50
101
and thus,
I(t) = — [sin(30t) — 10 cos(30t)] + 50 -t
- 101 101

A graph of the current can be see in Figure ?7.
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Figure 5.1.3: A graph of the current over time. Here
E = 60sin(30t). The green line shows a reference
to input (1/2)sin(30t). Notice how the current is 90
degrees phase shifted from the input.

5.2 Resistor and Capacitor:
First Order Differential
Equations

5.2.1 General Overview

An example of a simple circuit with a single capacitor
and a single resistor can be seen in Figure 77.

- Voltage Drop (Ohm’s Law) for Resistors: E =
IR, where E is the voltage, measured in volts
(V), I is the current, measured in amperes (A),
and R is the resistance, measured in ohms, (2.

- Voltage Drop for Capacitors: E = %, where (@ is
the charge, measured in coulombs, and C is the
capacitance, measured in farads (F).

- NOTE: Current is the change in charge over
time, thus I = %.

- Kirchoff’s Voltage Law (total voltage is equal to
the sum of the voltage drops): E = IR + % =
Rﬂ + Q

a T T



Figure 5.2.1: A simple circuit with a single capacitor
and a single resistor

5.2.2 DC

If R =50, C =0.05F, and £ = 60V, then we can
solve for Q(t) using an integrating factor,

Q 1
5+ =@ =60
dQ
_v 2 —
5 +20Q = 60
dQ
40 = 12
1 T
4t Q+4Qe4t 2 4t

E [Qe‘“’] = 12¢*

/ % [Qe''] = / 12¢*

Qe't = 3e* + ¢
Qt)=3+Ce ™™

If Q(0) = 0, then

0=3+C
C=-
and thus,
Q(t) =3 —3e (5.2.1)

To derive an equation for the current, I(t), we sim-
ply take the derivative of Equation 77?.

dQ

— 192¢—4t.
dt

I(t) =
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charge

Figure 5.2.2: A graph of how the current, I(t), goes to
zero as the capacitor builds its charge. Here E = 60.

A graph of the charge, Q(t), building up and the
current, I(t), going to zero can be seen in Figure 77.

5.2.3 AC

If R = 20, C = 0.01F and E(t) = 10sin(60¢), then
we can solve for ()(t) using an integrating factor:

d@ B
r + mQ 10 sin(60t)

C;Cf + 100Q) = 10sin(60¢)
dd? + 50Q = 5sin(60t)
50t ddQ + 50Qe50t e50t Sln(60t)
d

[Qe50t] = 5% s5in(60t)

/ 5 e = / 5e°% sin(60t).

Integrating both sides then gives us a general solution

for Q(t):

50t
Qe = 5 [wa (50in(60t) — 60 cos(60t)) + C
Q) = m [50 sin(60t) — 60 cos(60¢)]
4 Ce—50t

_ 0 6 —50t
Q) = i n(60¢t) 123 cos(60t) + Ce



charge

L I
0.6 08

Figure 5.2.3: A graph of the charge, Q(t), and cur-
rent, I(t). Here E = 10sin(60¢)

If Q(0) = 0, then

6
0=0- 123 +C
_6
122
and thus,
_ 5 6 6 _so¢
Q) = 123 sin(60t) 123 cos(60t) + 193¢

(5.2.2)

To derive an equation for the current, I(t), we sim-
ply take the derivative of Equation ?7.

_dQ 300

T 122"

30050

360 .
(60t) — 199

+ ——sin

1) 122

(60t)

A graph of the charge and current can be seen in
Figure ?7.

5.3 Resistor, Inductor and Ca-
pacitor: Second Order Dif-
ferential Equations

5.3.1 General Overview

An example of a simple circuit with a single resistor,
a single inductor and a single capacitor can be seen
in Figure ?7.

- Voltage Drop (Ohm’s Law) for Resistors: E =
IR, where E is the voltage, measured in volts
(V), I is the current, measured in amperes (A),
and R is the resistance, measured in ohms, (2.
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Figure 5.3.1: A simple circuit with a single resistor,
a single inductor and a single capacitor.

Voltage Drop for Inductors: E = L%, where L
is the inductance, measured in henries (H).

Voltage Drop for Capacitors: E = %, where @ is

the charge, measured in coulombs, and C is the
capacitance, measured in farads (F).

NOTE: Current is the change in charge over
time, thus T = 42.

Kirchoff’s Voltage Law (total voltage is equal to
the sum of the voltage drops): E = IR++L4-+

d a2
E=RE+LGF+72
5.3.2 DC
If R = 20w, L = 1H, C = 0.002F and E = 12V, then
dQ d?Q 1
024+ 4 — Q=12
a T ae T oo0z?
4’Q dQ
— 4+ 20— =12.
ATER 0 i + 500Q

We can use the method of undetermined coefficients
(explained in Section ?7?) to solve for the charge, Q(¢),
and by differentiating Q(t), the current, I(t).
First, we must solve for Q.(t). Here the comple-
mentary equation is:
d’Q dQ

2 +20—%

500Q = 0
e q +900@ =0,

and the characteristic equation is:

r2 + 20r + 500 = 0.



The roots of the characteristic equation are r; =
—10 4 20¢ and ro = —10 — 20¢ and thus,

Q.(t) = e 1% (¢; sin(20t) + ¢ cos(20t)) .

To solve for @, (t) we begin by setting it to an un-
known constant since E(t) = 12. Thus,

Qp(t) =A
Qp(t) =0
p(t) =0

and we substitute these into the original differential
equation:

5004 = 12
3
= 125’
thus,
3
Qp(t) = 35

Combining Q.(t) and Qp(t) gives us a general so-
lution to the differential equation:

3
125°
If the initial charge is zero, that is Q(0) = 0, then

Q(t) = e 1% (¢, sin(20t) 4 co cos(20t)) +

Cc2 + =0

125
3

Cy = —1—25

If the initial current is also zero, that is I(¢) = 0, then
we must first differentiate Q(t), since I(t) = Q' ().

I(t) = % = —10e71% (¢; sin(20t) 4 c5 cos(20t))
+ €719 (20¢; cos(20t) — 20c; sin(20t)),
and then
I(0) = 0 = —10c, + 20c;
30
= ES + 2001
=_ 0 __ 3
T 72500 250
Thus, with ¢; = —% and ¢y = —13—5, the formula

for the charge is:

3 3 3
_ _ 1ot [ Y s e
) = —e (250 Sin(200) + 155 COS(QOt)) T 125
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charge

Figure 5.3.2: A graph of the charge, Q(t), and cur-
rent, I(t). Here E = 12V

and the formula for the current is:

3 3
— —10t 3 2
I(t) = 10e [250 sin(20t) + 195 cos( Ot)]

[ 60 60 ]
_ 1ot | U _ b0 .
e 1950 cos(20¢) 125 s1n(20t)_
15 60
— p—10¢ in(2 2
e [—125 sin(20t) + 250 cos( Ot)]

_eml0t

[ 60 60 . ]
250 cos(20t) — 195 sm(20t)_

15 60
_ —lot . 10t in(2
e 1or sin(20t) + e 125 sin(20t)

= ge_mt sin(20¢).

A graph of the charge and the current can be seen
in Figure 7?7

5.3.3 AC
If E(t) = 12sin(10t), then

d’Q dQ .
Tz T4+ 500Q = 12sin(10¢).

We can use the method of undetermined coefficients
to solve for Q(t) and I(t).

In Section ?? we found the solution for the com-
plementary equation, Q.(t) to be:

Q.(t) = e 1% (¢; cos(20t) + co sin(20t)) .

To solve for ,,(t) we begin by setting it to an equa-



tion similar to the function for E(t). Thus,

Qp(t) = Acos(10t) + Bsin(10¢)
Qy(®)
Q”

P

—10Asin(10t) + 10B cos(10t)
(t) = —100A cos(10t) — 100B sin(10t)

0.1

and we substitute these into the original differential
equation:

JEANVAANVENNVENNVENVANY S
(—100A4 cos(10t) — 100B sin(10¢)) oy
+ 20 (—10Asin(10t) + 10B cos(10t)) » ‘ ‘ ‘ ‘ ‘ ‘ ‘
+ 500 (A cos(10t) + B'sin(10t)) = 12sin(10¢) oo m
which reduces to

Figure 5.3.3: A graph of the charge, Q(t), and cur-
rent, I(t). Here E = 12sin(10t)
(2A + B) cos(10t) + (—A + 2B) sin(10t)

12,
= %00 sin(10t).

and then
This gives us the system of equations: 10) = —30 4 200y + 30 _ 0
250 125
2A+B=0 _ 3
Coy = ——.
12 500
Thus, with ¢; = 23 and ¢ = 25
and from these we determine that A = -2 and B = the charge is:
3
125

o5, the formula for
Combining Q.(t) and Qp(t) gives us a general so-
lution to the differential equation:

3 -3
Q(t) = e 10 [ﬁ cos(20t) + 500 sin(ZOt)]
3
Q(t) = e 1% (¢; cos(20t) + ¢, sin(20t)) 555 C0s(108) + oz sin(108),
3
~ 250 cos(10t) + 125 sin(10¢). and the equation for the current is:
If the initial charge is zero, that is Q(0) = 0, then I(t) = — 1061 3 cos(208) + -3 sin(20¢)
3 250 500
— oo = 60
€~ 550 =V + ¢ 10t [ﬁ sin(20t) —
3
“1 7 250

—60
— 2
200 cos( Ot)]

30 . 30
+ 2—50 sm(lOt) + Ef) COS(lOt),
If the initial current is also zero, that is I(t) = 0, then

which reduces to:
we must first differentiate Q(¢), since I(t) = Q'(¢)

1) = e 10 | 2220 cos208) —
40 500
I(t) = = —10e 19 (¢; cos(20t) + c2 sin(20t))

45 |
250 sm(20t)]
+ 7% (20¢, sin(20t) — 20¢; cos(20t))

30

——sin(1 — 10%).
+ 550 sin(10¢t) + 195 cos(10t)

. 30 A graph of the charge and the current can be seen
i 2 cos(1

* 550 Sn(108) + 355 c0s(108) 4 Figure 77
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5.4 Operational
(opamps)

5.4.1 General Overview

Amplifiers
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Chapter 6

Making the “Data Modeling:
HOWTO”: HOWTO

6.1 Introduction

Here we are attempting to document how this
HOWTO was created. This is useful primarily for us,
the authors, as we have found it is hard to remember
all of the various details of different graphic programs
or even how to manipulate the CVS directory.

6.2 Drawing Graphs

6.2.1 GNUPIlot

Here’s how the 3-D graph used to illustrate Lagrange
multipliers (see Figure 7?7 on page ?7) was created:

gnuplot>
gnuplot>
gnuplot>

set term postscript color

set output "graph3d.eps"

set hidden3d

gnuplot> set contour

gnuplot> splot [-10:10][-10:10][-200:200]\
> —(x**2 + y**2)-10, x**2 + y*x3

The first command, set term, sets the output to
be a postscript file (with color). The second com-
mand sets the name of the file. set hidden3d tells
gnuplot to let surfaces in the foreground block the vis-
ibility of those that are behind them. To turn this op-
tion off, and return to a simply wire frame rendering
of your graphs, use the command set nohidden3d.
set contour tells gnuplot to draw the contour lines
on the plane beneath the graphs. The final command
creates the graph. If you leave off the first two com-
mands, gnuplot will draw the graph to a new window
instead of writing it to a file.
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6.2.2 Octave

One thing to note about using Octave, is that to gen-
erate graphs, it uses GNUPlot, so a lot of the com-
mands are the same.

Here is how to create one of the normal curve
graphs that are so common in the paper:

> x = linspace(-8, 8, 100);
> y = normal_pdf (x);
> plot(x, y)

If we wanted to replace the “line 1”7 label that is
the default, we could change our plot command to
add our own version:

¢

> plot(x, y, ‘‘;mu = 0, sigma = 1;°?)
To export the graph as a color EPS file, all you

need to do is:

> gset term postscript eps color;
> gset output "normal_curve.eps"
> replot

Sometimes when you are using octave, you may
want to export the data that you are working with
so you can import it into another graphing program
other than gnuplot (for example, you may want to
import the data into xmgrace). To do this requires
a little bit of a trick since you’ll notice that octave
exports vectors as a single line with a whitespace be-
tween the elements. While this makes perfect sense
to do, it is often the case that you have a vector rep-
resenting the values for the x-axis and a vector (or
vectors) representing values on the y-axis (as we do
in the example we just gave). If we were to export
these vectors directly, we’d get the values for the x



and the y axis on two different lines and this is not
what we want. Instead, we’d like to have each line in
our output file correspond to a value from the x-axis
vector and a value from the y-axis vector (or values
from y-axis vectors). To do this, you simply create
a new matrix that is made up of the transposes of
these vectors. To continue with the previous exam-
ple, if we wanted to export our data in a format that
could easily be imported into xmgrace we would do
this:

> x = linspace(-8, 8, 100);
> y = normal_pdf (x);
>z =[x, y1;

(33

> save -ascii ‘‘output_file.txt’’ z

6.2.3 Octave With Grace

This is a step by step guide to how Figure ?? was
created.
Get data defining the x? curve from octave:

octave> x
octave> y =

linspace(0, 8, 100);
chisquare_pdf (x, 1);

octave> plot(x, y) # verify the graph
octave> z = [x’, y’];

octave> save -ascii "chi_squarel.dat" z
octave> exit

Set the GRACE_EDITOR environment variable: The
default editor for Grace data files is Vi. If this is fine
with you, you can skip this step. Otherwise, you can
either set the variable on the command line:

shell> export GRACE_EDITOR emacs

or edit your shell configuration file. Editing your con-
figuration file has the advantage of setting things up
for your future sessions with grace as well.

Now import the data into Grace:

shell> xmgrace chi_squarel.dat &

You can modify the X-axis and the Y-axis to dis-
play things the way you want them to look by choos-
ing Axis properties from the Plot menu.

Now we want to highlight the area under the curve
specified by the chi-square statistic. To do this, we
first duplicate the data set. You can do this in a
number of ways. Here we will choose Data sets...
from the Edit menu. This will bring up a window
listing the existing data sets. Click on the dataset to
select it. Now right click on the dataset and choose
Duplicate from the menu.

We will now edit the duplicate data set to remove
all of the points that occur before our chi-square
value. We do this by right clicking on the new data set
and selecting Edit—In text editor from the menu.
Now, delete all of the data rows that come before X
= 5.76. After you have done this, save the changes
to the data, close the editor and click on the Accept
button at the bottom of the window.

To color the area the under second, smaller dataset
we now select Set appearance from the Plot menu
and

e select the second set in the box at the top of the
window

e click on the Line tab
e select To baseline from Type menu
e select a nice color and pattern.

e click on the Accept button at the bottom of the
window.

We can also add text and arrows to graph with
drawing tools by selecting Drawing objects from
the Window menu.

To create EPS and PDF files (EPS files are needed
to create DVI output and PDF files are needed to
create PDF output) select Print setup from the
File menu. Now select eps or pdf' from the De-
vice menu. Now click Accept at the bottom of the
window. Now select Print from the File menu.

6.2.4 Phase Plots With Maple

The phase plot illustrations in the section on Differen-
tial Equations, Section ?7, were drawn using maple.
The first thing you need to do is declare that you want
to use the DEtools. This is done with the command:

> with(DEtools):

To draw the plot in Figure ??, the following com-
mands were then used:

> deql := D(y)(t) = (-2 * (y(t) - 4);
> plotl := DEplot(deql, y(t),\
t=-3..3, y=-3..3, arrows=LINE):

> plots[display] ({plotil});

Ixmgrace doesn’t do the best job exporting PDF images so
it is sometimes better to export an EPS image an use epstopdf
to create the PDF version. You will just have to do it both
ways and decide which looks better.
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To draw the plot in Figure 7?7, the following com-
mands were used:

> deq2 := D(y) () =\

(y(£) - Dx*(y(t) - 2)*(y(t) - 3);
> plot2 := DEplot(deq2, y(t),\
t=-2..2, y=0..4, arrows=LINE):
> plots[display] ({plot2});

6.3 Creating PDF Files From
EPS Files

In order for both the command line latex and
pdflatex programs to work correctly with a single
file, datamodel. tex all illustrations be in both PDF
and EPS formats. This is because xdvi will only dis-
play EPS images and PDF viewers will only display
images in the PDF format. If the program you are
working with will not export both types of images,
EPS images can be converted using epstopdf.

6.4 CVS

All of the source LaTeX files as well as illustrations
are stored in a CVS repository: see

http://sourceforge.net

or specifically, follow the link to the datamodel web-
site,

http://sourceforge.net/projects/datamodel/

and follow the link to CVS.

6.4.1 Obtaining the Source

As a viewer of the project, you can either download
the entire project or view the project files and se-
lectively download what you are interested in. The

page:
http://sourceforge.net/cvs/7group_id=44909

gives detailed instructions for anonymous ftp of the
project files.

As a developer, to access them you must first make
sure that the environment variable CVS_RSH is set to
ssh. You can do this with the command:

shell> export CVS_RSH=ssh
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or by adding export CVS_RSH=ssh to your shell con-
figuration file and reloading the shell. If you use the
latter method you will, of course, only have to modify
the file one time and never have to worry about this
step again.

With the CVS_RSH environment variable set, the
datamodel project can then be downloaded using the
command:

shell> cvs -z3\
> -d:ext:username@cvs.sourceforge.net:\
> /cvsroot/datamodel co datamodel

where username is your sourecforge.net username.

6.4.2 Updating The CVS Repository

After you have modified the files, you can update the
CVS repository using the commands:

shell> cvs update
shell> cvs commit

When you run the cvs commit command, you will
be asked to write a comment about the changes you
made in the editor of your choice (defined by the
EDITOR environment variable, so if you don’t want
to use Vi for this, you had better set this).

6.4.3 Adding New Files

You can add new files to the CVS repository with the
commands:

shell> cvs add new_file_name
shell> cvs commit

NOTE: Once you add a new file, you can not remove
it from the CVS repository.

6.5 Setting up a CVS Reposi-
tory From Scratch

While this was not necessary for this current project,
it is such a useful thing to do that it deserves mention
here.

The very first thing you need to do is make sure you
have the necessary software installed on your com-
puter. That is, make sure you have cvs, rcs and ssh
installed. Typical RedHat installs take care of this
for you.



6.5.1 Creating and Initializing the
Repository

This section describes a creation and initialization
stage that is only required the very first time you try
to get CVS working on your computer.? Once this is
done, you can add new projects or directories to the
repository without having to go through this process.

You first need to create a directory on your com-
puter that can be used as the repository. Usually this
is set to /home/cvsroot/ but you can put it anywhere
you want. You will also need to give read and write
access to any users or groups that will be using the
repository. For example, you may wish to use the
following commands:

shell>
shell#
shell#
shell#
shell#
shell#
shell#
shell#
shell#
shell#

su

export CVSROOT=/home/cvsroot
groupadd cvs

useradd -g cvs -d $CVSROOT cvs
mkdir $CVSROOT

chgrp -R cvs $CVSROOT

chmod o-rwx $CVSROOT

chmod u+rwx $CVSROOT

chmod g+rwxs $CVSROOT

cvs init

Now add add users to the cvs group.
bash# usermod -G cvs some_username

where some_uesrname is a user you want to have read
and write access to the repository.

6.5.2 User Environment Variables

There are three main environment variables you will
need to have set, EDITOR, CVS_RSH and CVSROOT.
Chances are, EDITOR is already set the way you like it.
CVS_RSH must be set to ssh. CVSR0OOT is the location
of the directory that will contain the repository. If it
is not, now is a good chance to take care of it. It is
best to set these variables in your shell configuration
file. For example, adding the following lines:

export CVS_RSH=ssh
export EDITOR=emacs
export CVSRO0T=/home/cvsroot

2A lot of the material in this section was plagiarized from
the web page: CVS-RCS-HOWTO.html, written by Alavoor
Vasudevan.
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6.5.3 Adding a Project to the Repos-
itory

Now that you have the CVS repository initialized and
you have your own environment variables set, you can
add a project to it. To do this, first change to the
project directory:

shell> cd $HOME/my_project_dir/
and import the directory:
cvs import my_project_dir vendor_1_0 ref_1_0

Here vendor_1 0 and ref_1_0 are just vendor and
revision tags that are required for the initial import.
I just leave them as is and things work just fine.

6.5.4 Setting up a Client Computer
for CVS Access

Once you have your CVS repository running on your
host computer, you may want to access it from other
computers (clients). To do this, simply set the
EDITOR, CVS_RSH and CVSROOT environment variables.
In this case, however, you may only wish to set the
CVSROOT environment variable on the command line
as you may wish to use the computer to access CVS
repositories on a variety of host machines. Thus, you
may wish to add the following lines to your shell con-
figuration file:

export CVS_RSH=ssh
export EDITOR=emacs

and, on the command line:

shell> export CVSROOT=’’:ext:\
> username@cvs_server_box.domain.edu:\
> /home/cvsroot?’’

Now you should be able to obtain the CVS projects
stored on the host computer.

6.5.5 Building the Data Modeling
Document

Due to the presence of both embedded references and
an index, once you obtain the datamodel files, you
must follow these steps to build the document:

shell> latex datamodel.tex
shell> makeindex datamodel.idx
shell> latex datamodle.tex



Appendix A

Octave Programs

A.1 Univariate General Linear Models

function beta=general_linear(x,y,c)

# y is a column (nxl) vector of observations

# x is the design matrix (nxm)

# c is the contrast matrix

# NOTE: it is assumed that c is set up so that theta = 0

= max(size(x)); # number of observations
min(size(x)); # number of parameters
num_tests = min(size(c)); # number of tests

o B
|||

beta = inv(x’*x)*x’*y # estimate the parameters

# test model

numerator = beta’*c’*inv((c*inv(x’*x)*c’))*cxbeta / num_tests;
denominator = (y’*y - y’*x*beta)/(n-p); # this is also known as MSE
f_test = numerator / denominator

p_value = 1 - f_cdf(f_test, num_tests, n—p) # calculate p-value

if (num_tests == 1)
t_test = sqrt(f_test)
end

# generate graphical output
MIN_F_DIST = 0;
MAX_F_DIST = 20;
NUM_STEPS = 100;

graph_x = linspace(MIN_F_DIST, MAX_F_DIST, NUM_STEPS);
graph_y = f_pdf(graph_x, num_tests, n-p);

description = sprintf("g;F(%d, %d)-Dist;", num_tests, n-p);
plot(graph_x, graph_y, description, f_test, 0, "r*;Your Data;")
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endfunction

A.2 Generating Normal(0,1) Random Variables

function normals=generate_normals(n)
## NOTE: if ’n’ is odd, then you’ll get floor(n) random variables
for i = 1:(n/2)
ul = rand();
u2 = rand();

r = sqrt(-2xlog(ul));
theta = 2 * pi * u2;

normals((i*2)-1) = r * cos(theta);
normals(i*2) = r * sin(theta);

endfor
endfunction

A.3 Generating a Random Sample from a Discrete Distribution

function discretes=generate_discretes(n)

## First map the distribution to the interval [0,1].

dist(1) = 0.25;
dist(2) = 0.5;
dist(3) = 0.25;

for i = 1:(n)

ul = rand();

total = 0;

index = 1;

for j = 1:length(dist)

total = total + dist(j);
if (ul < total)
index = j;
break;
endif
endfor

u2 = rand();

discretes(i) = u2 + (index - 1);
endfor

endfunction
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Appendix B

Rather Large Matrices

B.1

The design matrix used in Example ??. Only the first 31 of 60 rows are shown.

Variationx Spacing
A

Spacing

Block x Variation

Variation

Block

©
~~

0 0 0 O
0 0 0 O
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

-1
-1
-1
-1
-1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

-1
-1
-1
-1
-1

0 0
0 0
0 0
0 0

-1
-1
-1
-1
-1

0
0
0
0
0

0
0
0

0

1

0 0 O
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B.2

To test for interaction between Variety and Spacing, the contrast matrix is:

1
1
l

0000O0O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OTI O0O00O0
0000O0O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OTI 00O
0000O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OI1IO0
00000O0OO0OO0OO0OO0OO0OOOOOOO0OO0OOQO0OTI1

To test for a main effect for Spacing, the contrast matrix is:

C=

B.3

00 000O0OO0OO0OO0O0O0O0O0OO0O1O0O0OO0OO0OSO0OO0OO®O0
00 00O0O0OO0OO0OO0O0O0O0O0O0O0O0O0O01O0O0O0OSO0ODO0O®O0
0000O0O0OO0OO0OO0OO0O0O0OO0OO0O0O0O1O0O0OSO0OO0O®O
00 00O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OT11TO0G®O0O0O0

To test to see if the interaction term (Fieldx Variety) is significant, the contrast matrix is:

C

B.4

0000O0O0OO0O1O0O0O0OO0OO0OOOO0OOSOOO0ODQ
0000O0O0OO0OO0O1O0O0OO0OO0OOOO0OOOOO0ODQ
0000O0O0O0OO0OO0O1O0O0OO0OO0OO0OO0OO0OOOO0ODQO0

0000O0O0O0O0OO0OO0OO0O01O0O0OO0OO0OO0OO0OOOO0ODQ0
0000O0O0OO0OO0OO0OO0O0O0OT1IO0O0OO0OO0OO0OSOOO0ODO

|
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Appendix C

Data Used for Examples

C.1
y1, Mean Blood Pressure y9, Cardiac Output 1, Respiration Rate x2, Heart Rate
1104 1.76 0.07 7.8
102.8 1.55 0.07 8.9
101.0 2.73 0.07 8.9
108.4 2.73 0.07 7.2
100.7 2.56 0.07 8.4
100.3 2.8 0.07 8.7
102.0 2.8 0.07 74
93.7 1.84 0.07 8.7
98.9 2.16 0.07 8.8
96.6 1.98 0.02 7.6
99.4 0.59 0.02 6.5
96.2 0.80 0.02 6.7
99.0 0.80 0.02 6.2
88.4 1.05 0.02 7.0
75.3 1.80 0.02 7.3
92.0 1.80 0.02 6.5
82.4 1.77 0.02 7.6
77.1 2.30 0.02 8.2
74.0 2.03 0.474 7.6
65.7 1.91 0.474 8.3
56.8 1.91 0.474 8.2
62.1 1.91 0.474 6.9
61.0 0.76 0.474 7.4
53.2 2.13 0.474 0.76
59.4 2.13 0.474 6.9
58.7 1.51 0.474 7.5
58.0 2.05 0.474 7.6
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Appendix D

Derivations For the Curious

D.1 Nernst-Planck Equation

When ions are in solution, there are three mechanisms for movement: brownian motion (thermal), ordered
drift due to a potential (voltage) field, and diffusion, ordered drift down a concentration gradient.

Consider first, drift down a concentration gradient. In solution, each molecule is not stationary but is
moving and the motion results in collisions with neighbors. In a region of high concentration, collisions are
more likely than in regions of low concentration. Thus, at the interface between a high concentration and a
low concentration, there will be a collision gradient, more collisions on the high concentration side than on
the low concentration side (see figure ??. This gradient results in a drift of carriers into the low concentration
region, increasing its concentration. An equilibrium is reached when the concentration equilibrates and the
frequency of collision is spatially uniform. The flux associated with the drift is

d[C]

T

where Z is the valence of the charge carrier and D is the diffusion constant.
Charge carriers are accelerated by the electrical attraction of the carrier within the electric field. As

the charge is attracted, things get in the way that result in collisions. After each collision, velocity is lost

resulting and is slowly recovered due to the acceleration caused by the attraction of the charge carrier and

the potential field. To descirbe this, we start with the force that an unit charge feels within an electric field:

j=-|Z|D (D.1.1)

dimv)  muy
F = — E = = —
e dt T

where F is the force, q is the unit charge and E is the electric field. Remember that the electric field, E =
dV/dx, is simply the change in potential at a point. Now the attractive force will change the momemtum
of a charge carrier either positively (acceleration) or negatively (deceleration). We assume that the drift
velocity is vy and 7 is the time between the collisions of the charge carrier and something. From this, we
can write the drift velocity between collisions due to the field (we ignore the collision events - acceleration
and deceleration) as

qET
Vg = ———
m
Now define the mobility of the charge, u as
_ar
b=
so that the drift velocity is
Vg = —/J,E



Figure D.1.1: A glass filled with high concentration Na on the left and low concentration Na on the right

|1

Battery

Figure D.1.2: A + charge in solution attracted to the negative plate.
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which simply states that in the presence of a spatially uniform electric field, the charge will move with a
fixed velocity known as the drift velocity, that is proportional to the charge and inversely proportional to
the mass of the charge.

Now the current density associated with the flow of charge within an electric field in a solution is:

J = va| Z|F[C]

where Z is the valence of the charge carrier, F is the number of coulombs of charge per mole of ion, and
[C] is the concentration of charge carriers. But the drift velocity is —pF so that the current density can be
written as

j=|Z|F[C|pE =oFE Ohm’s law

where 0 = |Z|Fu[C] is the conductivity. Note that the conductivity is proportional to the concentration of
the ion carrier and its charge. Now, we combine the diffusive and electrical components of the flux under
equilibrium conditions and have

d[C] d[C] av
— 12D 4| Z|F[CpE = -DZ + FIC|uS- =
|Z|D= = +1ZIF[Clu gy Tl =0

Now we integrate this across the interface (cell membrane) that separates the extracellular fluid from the
cytoplasm and have
d[C] / av
D—— = [ F[Clu—
/ dx [Clu dz

dc] _
/ DW = / Fudv
DIn[Cout] — In[Cin]] = Fu(Vous — Vin)

_ D [Cout]
Vout — Vin = F,uln [Cin]

Einstein showed, in a cute little derivation that
D = uRT

where R is the gas constant (8.314 J/K mole at 27 C), and T is the absolute temperature. At 27 C, RT/F =
8.314 * 300 / 96487 = 25.8 mV at 27 C. so for a monovalent cation or anion, the transmembrane potential
due to a single charge carrier is:

Vinembrane(mV) = % [[Cé)l‘:j] = 25.8In [%1;3]
D.2 Cubic Nonlinear ODE
(31_1: = ulk =) (D.2.1)

Solved using the method of seperation of variables and some fancy algebra...

du 9
T u(k — u®)
du
u(k —u2) d

du
wi—a = | @
/(ku)/t
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Now, we will break down m
First note:
(k=) = (VEk—u)(Vk +u)
and thus,
1 1 1 1
_ = + D.2.2
k—u? Zﬂ(\/E—u \/E-HL) ( )
Also note,
1 1 1 1
- =4 — D.2.3
u(\/E—u) ﬁ(“ \/E—U) ( )
and
1 1 1 1
- - - (- D.24
i~ (D24

Putting together the general concepts in Equations ??, 7?7, and ?? we get...
1 1 1 1 1 1
(S NCE)
ulb—u?) 2k |\u Vk—u u Vk+u
So, to solve our non-linear differential equation, we make the substitution...
1 1 1 1 1
— +— )+ |- |du= / dt
/ [(U \/E—u) (U \/E-I-u)]
1 1
+({-- du=t+C
) |G 7=) G-7n)]

1
% (log|u|—log|\/E—u|+10g|u|—10g|\/E+u|) =t+C
s () g( )
[VE = ul
log =2tk+C
) |f+m
1°g< (= )

=2tk+C

=2tk+C

— 2kHC _ 2tk C _ o2tk

Ik—UH
|k ;2“2| — Ce 2tk
k
E —1= 0672“‘:
k
E =1+ Ceiztk
u’ = __k__
1+ Ce2tk

_ )k
YTV Cen
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D.3 Vector and Matrix Calculus

Let x be an n x 1 vector and let A be an m x n matrix of elements that are not functions of x. Then

0Ax
—— =A D.3.1

ox (D-3.1)
To see this, we’ll just multiply out Ax and then apply the definition of vector differentiation (Equation ?7?).
Thus

1,11 +G12%2 + -+ Q1,nTp
OAX o 21%1 + G22T2 + - + A2 n Ty
ox  Ox :

Am1T1 + Ay 2T2 + -+ Gy nTn

and, in order to keep our matrix from getting too big for the page, let

a1121 + a1 222 + -+ a1, = aix
2,121 +a22T2 + -+ A2 ,T, = a2X
Am,1T1 + AGm2T2 + -+ GpnTn = apX.
Thus,
b ax Lax --- La x
a1,1T1 + a12%2 + -+ + A1 Ty ax 921 1 Bz1 2 Bz m
o Q2,1T1 + G22T2 + -+ + A2 nTh 5 asx B A1X  FA2X - FoamX
ax = ox = . . .
A 1T1 + Q2T + -+ + QT a,,X 0 0 o
m,1L1 m,2L2 m,nTn m Bz, a1X FyoAX - mmapX
a1 421 - Gm
ai2 Q2 - Gp2
= = AI
G1,n QA2;n  *°°  Amn

If we let x an n x 1 vector and let A be defined in a similar fashion to A in Example 77, only now we require
A to be an n x n matrix, then

ox' Ax

S = (A+Ax, (DA1)

and if A is symmetric, that is A = A’ then (A + A')x = 2Ax.
Once again, to understand how these results are derived we will simply multiply out the matrices and then
apply the definition of vector differentiation (Equation ??). Thus,
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g4
ox'Ax T2

ox

0
= [ mia1) + -+ Tnapy Tia12+ -+ TpGpa 0 TG+ F Tplng |
Tn

0
= 5 [Z1(zra11 + -+ Zpap1) F22(1a1,2 + -+ Tpapg) + o F Tp(@101,, + -+ Ty
[ 3%1331 (331&1,1 +---+ xnan,l) + $2($1a1,2 + -+ il?nan,2) +---+ mn(ﬂhal,n +---+ JUnan,n)
3%2331 (331&1,1 +---+ xnan,l) + $2($1a1,2 e il?nan,2) +---+ mn(ﬂhal,n +---+ JUnan,n)

8
| so-?1(T1a1,1 + -+ Tpan) + 22(T1a1,2 + -+ TnGp2) o+ Tp(T101,0 + 100 F Trann)

(2z1a11 + T2021 + - + Tpan1) + (T2a12) + - - + (Tna1,n)
(z102,1) + (z101,2 + 222022 + - - - + Tpan2) + - - + (Tnaa,n)

(10n,1) + (X20n2) + -+ + (101, + T202,5 + -+ - 2Zpan,n)

(®1G11 + 221 + -+ + Tpapn1) + (1011 + 212+ - + Tpa1 )
(®1G1,2 + T2a22 + - -+ + Tpan2) + (X1021 + T2a22 + -+ + Tpasy,)

(mlal,n + z2a2, + -+ xnan,n) + (xlan,l + zoGp2 + -+ xnan,n)

z1(a11+a11) +z2(ar2 +a21) + -+ zp(ain +ani)

z1(az1 + a21) + z2(az2 +a22) +--- + zp(azn + an2) ,

Z1 (an,l + al,n) + z2 (an,2 + a2,n) + e+ -'L'n(an,n + an,n)

D.5

D.6

(Y — XB) {X(x'X)—lc' [cx'x)"tc] ' o - c,é)}

= (Y -XA) {X(X’X)*lC’[C(X’X)*IC']*O - X(x'xrlC'[C(x'xrlc']*lcﬁz}

= Y'X(X'X)'C'[C(X'X)ICe - Y'X(X'X)“'/C[C(X'X)"IC " eB
_BX'X(X'X)LC/[C(X'X)1C] 10 + B X'X(X'X) O/ [C(X'X)1C] e

= goexx)le] e - g eexx)lc B
_gcex'x) e e+ B'CcX'X) e e

=0

[X(X'X)—lc' [cx'x)~Lc]™" (6 - CB) ] [ Lo [ex'x)~te] Tt o - cﬁ)]

= (6-CB) [cxX'X)"'C] ' c(X'X)" I X'X(X'X)"IC! [C( X)-'c] ™ (6 - CB)

= (8-CPB) [c(X'X)'C]” c(xX'X)"'C' [c(X'X)'C] ' (8- CB)

= (0-CP) [cX'X)7'C] " (8- Ch)
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D.7 Proof of F-Distribution

The goal here is to show that Equation ??, that is

(CB -0y [C(X'X)"'C] ' (CB-0)/t
(Y — XB)'(Y — XB)/(n —p)

has an F-distribution. We will do this by showing that the numerator and the denominator are both o2
times chi-square variables divided by their degrees of freedom.

Since ,B = (X'X)~!X'Y is a linear function of Y, and Y ~ N (XS, 0?), a vector of n iid random variables,
it follows from Equations ?? and ?? that 3 is a vector of p random variables with a N(8,02 [X'X]~1)
distribution. Thus, the transformation, CB — 0, results in ¢ random variables (¢ being the number of rows
in C, the number of tests):

7

CB — 60 ~ Ny(CB —0,5°C[X'X]1C).
Under the hypothesis that Cﬁ — 0 =0 we have,
CB — 6 ~ N,(0,02C[X'X]1C),
thus,

[C(X'X)"'C]~2(CB - 0) ~ Ny(0,02)
[C(X'X)ICV2(CB - 0) ~ Ny(0,1). (D.7.1)

Since the sum of ¢ squared iid N(0,1) variables results in a random variable distributed by x?, it follows
from Equation ?? that,

(CB - 0)[C(X'X)~'C']"(CB - 0) ~ o°x}.

Thus, we have shown that the numerator in Equation ?? is o times a chi-square random variable divided
by its degrees of freedom.

Showing the same thing for the denominator is a little more tricky as it involves some obscure transfor-
mations and knowing a few properties of quadratic forms. Instead of trying to explain the details about
quadratic forms that would be required for a full proof, we’ll simply go as far as we can with what we have
and appeal to your sense of intuition.

Let € = Y — X3, an approximation of the error vector, €, thus,

& = Y-Xj
= Y -XX'X)'X'Y
= I-XX'X)"'X)Y
(I-X(X'X)"'X")(XB +¢€)
= (XA -X(X'X)'X'XB)+ (I-X(X'X)'X")e
(I-X(X'X)"1X")e,

and
(Y =XB)(Y-XB) = [I-XX'X)'X)e]'[(T-X(X'X)X')¢]
= €I-X(X'X) 1X)(I-X(X'X) 1X')e (D.7.2)
= I-XX'X)'X' - X(X'X)"'X' + X(X'X) ' X'X(X'X) "' X")éD.7.3)
= €I-XX'X)"IX' - X(X'X)IX' + X(X'X)"1X")e (D.7.4)
= €I-X(X'X)"'X")e (D.7.5)



Equations 77, 77, 77 and ?? make it clear that (I — X(X'X) 1X’) is idempotent, that is,
(I— X(X'X)1X')(I - X(X'X)"1X') = (I - X(X'X)"1X).
We can determine the rank! of (I — X(X'X)~!X’) from its trace (that is, the sum the elements on the

diagonal) since it is idempotent and symmetric. Using a well known property of traces, that is, tr(ABC) =
tr(CAB), and the fact that X is an n x p matrix, we have

tr(I, — X(X'X) 'X") tr(I,) — tr(X(X'X) ' X")
= n—tr(X'X(X'X) 1)
= n—tr(I,)

= n-—p.

Since € ~ N, (0,0?), it follows that €/c ~ N,(0,1), thus we can imagine that Equation ?? is the sum of
n — p independent normal random variables. Thus, if we let A ~ N(0, 1), then

n—p n—p
E €€ = E oATA
i=1 i=1

n—p
_ Zaz)\z - U2X${,—p
=1

Showing that the numerator is independent from the denominator also requires some obscure transfor-
mations and requires another result from quadratic forms. Without proof, I will state that the following
theorem.

Let Z is a vector of of normally distributed random variables with a common variance and let
q1 = Z'AZ and ¢» = Z'BZ, where A and B are both n x n symmetric matrices. ¢; and ¢» are
independently distributed if and only if AB = 0.

Now, to show independence, under the hypothesis that C8 = 0, can re-write the ends of the numerator
with

(CB-6) = CB-Cp

= C(X'X)'[X'Y - X'Xp]
= C(X'X) X'[Y —Xg]
= C(X'X) 'X'e.

If welet A = X(X'X)"'C [C(X'X)"!C] ~! C(X'X)~1X', then we can rewrite the numerator of Equation ??

as € Ae. If we let B=1— X(X'X)~1X’, then we can rewrite the denominator to be €'Be. Since

X'B = X(I-X(X'X)"'X)
= X' -X'X(X'X)'X')
— XI _ XI
= 0,

AB = 0, and thus, under the hypothesis, the numerator and denominator are independent.

1The rank of a matrix is the number of linearly independent rows or columns. For any matrix, the number of linearly
independent rows is equal to the number of linearly independent columns.
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D.8

Bii P2
Ba,1 Paz
CU=[111 -1 -1 -1 0] gii giz [
Bsa Ps
Be1  Be,2

=[ (Bin +Boa +B31) — By + P51+ Be)  (Bra+ Bo2+B32) — (Bup + Bs2 + Pe2) | [ (1) (1) ]

(Bi,1 + P21+ B3,1) — (Ba1 + P51 + B6,1) ]
(B1,2+ B2.2+ B3.2) — (Ba2 + B5,2 + B6,2)

= O
—

O =
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Appendix E

Alternative Design Matrices for
ANOVA

In most text book discussions of design matrices for ANOVA, they commonly dwell solely on what is called the
over parameterized model and methods for overcoming its limitations instead of the model given in Examples
?? and ?7?. This is due primarily to the historical origins of ANOVA and reverence to the simplifications that
assisted solving the computations by hand. Since we have absolutely no interest in working these problems
out by hand, we have adopted a more modern, and in our opinion, more explicit design matrix for ANOVA.
However, since it is impossible to avoid these antiquated alternative design matrices and their methods of
use, we will describe them here.
Given the data in mice treatment data in Table 77, the over parameterized model is,

y = Boxo + Brx1 + Baza + B3x3 + Bazs,

where (3 estimates a mean value for all of the data (regardless of the particular treatment for each sample) and
the remaining four parameters estimate the means of the residuals for each treatment. This model represents
the fact that ANOVA was developed prior to the convenient access to computers that we have today and
it allowed for the calculations to be done by hand without having to use matrix algebra explicitly. These
methods, however, lack generality and obscure the question that you want ANOVA to answer. For example,
with the mice data, we ask the question “Are all the treatments the same?” With our modern model, we can
easily convert this question into one we can test by asking, “Are the means for each treatment the same?”
Using the over parameterized model we end up asking the mildly cryptic question, “Is the variation in the
sample due to variation within treatments or variation between treatments?” Both questions eventually will
yield the same answer: You decide which one will be easier to explain to someone not already steeped in
statistical terminology.

If we are going to use our general hypothesis test (Equation ??) to answer our question with the over
parameterized model, we must first create the design matrix. Thus, without displaying the redundant rows,
we have:

0
0
X= 1

—
OO =
OO = O
o OO

0 01

The problem with this design matrix, however, is that it can not be used with our hypothesis testing formula
due to the fact that X'X is singular. To work around this problem, statisticians have come up with three
solutions. The first is to remove the last column in X and modify the parameter vector, 8 to make up for
this change, the second is to modify X using what is called o-restricted notation, and the third is to create a
generalized inverse of X. Here we will focus on the first two methods since they are encountered most often
(see Steel, Torrie and Dickey, for examples using the over parameterized model).
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Using the first method we have to make the following changes to the design matrix and the parameter

vector:
1100 Bo + Pa
11010 _ | Bi—5B
X=1100 1| ®B=|3_3
1000 B3 — Ba
Now, if we multiply X and 3 together, we get:
Bo + b1
Bo + B2
XA =
p Bo + B3
Bo + B

Notice that By + 81 is just the mean of the first treatment, By + (2 is the mean of the second treatment, and
so on. Thus, after a lot of work modifying X and 3, we are exactly where our modern model began.

Using o-restricted notation, you allow the independent variables to take on three different values, 1, 0 and
-1, instead of the binary 1 and 0 used in the other methods. By doing so, we can indicate membership in
the last treatment by using -1 for the other treatments. This is because we are assuming that the estimates
are unbiased making the sum of the deviations zero. Thus, any particular deviation can be derived from the
others as the negetaive of the sum of the remaining deviations. Our design matrix becomes:

1 1 0 0 Bo
10 1 o0 | &
X=11 0 o 1 |#@dB=]y,

1 -1 -1 -1 B

The results here are similar to the over parameterized model.

It is clear that using a classic ANOVA approach both obscures the question you are interested in answering
and requires more effort on behalf of the individual willing to abide by it. These problems also carry
over to ANCOVA whereas our modern model generalizes without any additional effort (see Example ?7).
Furthermore, since there it is unessicary to reparameterize the design matrices involved in ANOVA and
ANCOVA, we can establish the guidline that any design matrix that requires reparameterization should be
a signal that you may be making unrealistic assumptions about the nature of the data (see Examples 77, 7?7
and ??). Thus, the authors are inclined to recommend using our modern approach to ANOVA.
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Appendix F

2x2 Factorial Interaction Plots and
Their Interpretation
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Dependent Variables (Averages) Dependent Variables (Averages)

Dependent Variables (Averages)
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Dependent Variables (Averages) Dependent Variables (Averages)

Dependent Variables (Averages)
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Appendix G

License

Copyright (c) 2002 C. Frank Starmer and Joshua D. Starmer. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation;
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